62,195 research outputs found

    Most Relevant Explanation in Bayesian Networks

    Full text link
    A major inference task in Bayesian networks is explaining why some variables are observed in their particular states using a set of target variables. Existing methods for solving this problem often generate explanations that are either too simple (underspecified) or too complex (overspecified). In this paper, we introduce a method called Most Relevant Explanation (MRE) which finds a partial instantiation of the target variables that maximizes the generalized Bayes factor (GBF) as the best explanation for the given evidence. Our study shows that GBF has several theoretical properties that enable MRE to automatically identify the most relevant target variables in forming its explanation. In particular, conditional Bayes factor (CBF), defined as the GBF of a new explanation conditioned on an existing explanation, provides a soft measure on the degree of relevance of the variables in the new explanation in explaining the evidence given the existing explanation. As a result, MRE is able to automatically prune less relevant variables from its explanation. We also show that CBF is able to capture well the explaining-away phenomenon that is often represented in Bayesian networks. Moreover, we define two dominance relations between the candidate solutions and use the relations to generalize MRE to find a set of top explanations that is both diverse and representative. Case studies on several benchmark diagnostic Bayesian networks show that MRE is often able to find explanatory hypotheses that are not only precise but also concise

    Most Relevant Explanation: Properties, Algorithms, and Evaluations

    Full text link
    Most Relevant Explanation (MRE) is a method for finding multivariate explanations for given evidence in Bayesian networks [12]. This paper studies the theoretical properties of MRE and develops an algorithm for finding multiple top MRE solutions. Our study shows that MRE relies on an implicit soft relevance measure in automatically identifying the most relevant target variables and pruning less relevant variables from an explanation. The soft measure also enables MRE to capture the intuitive phenomenon of explaining away encoded in Bayesian networks. Furthermore, our study shows that the solution space of MRE has a special lattice structure which yields interesting dominance relations among the solutions. A K-MRE algorithm based on these dominance relations is developed for generating a set of top solutions that are more representative. Our empirical results show that MRE methods are promising approaches for explanation in Bayesian networks.Comment: Appears in Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI2009

    Evaluating computational models of explanation using human judgments

    Full text link
    We evaluate four computational models of explanation in Bayesian networks by comparing model predictions to human judgments. In two experiments, we present human participants with causal structures for which the models make divergent predictions and either solicit the best explanation for an observed event (Experiment 1) or have participants rate provided explanations for an observed event (Experiment 2). Across two versions of two causal structures and across both experiments, we find that the Causal Explanation Tree and Most Relevant Explanation models provide better fits to human data than either Most Probable Explanation or Explanation Tree models. We identify strengths and shortcomings of these models and what they can reveal about human explanation. We conclude by suggesting the value of pursuing computational and psychological investigations of explanation in parallel.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    A Probabilistic Network of Predicates

    Full text link
    Bayesian networks are directed acyclic graphs representing independence relationships among a set of random variables. A random variable can be regarded as a set of exhaustive and mutually exclusive propositions. We argue that there are several drawbacks resulting from the propositional nature and acyclic structure of Bayesian networks. To remedy these shortcomings, we propose a probabilistic network where nodes represent unary predicates and which may contain directed cycles. The proposed representation allows us to represent domain knowledge in a single static network even though we cannot determine the instantiations of the predicates before hand. The ability to deal with cycles also enables us to handle cyclic causal tendencies and to recognize recursive plans.Comment: Appears in Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence (UAI1992

    Defining Explanation in Probabilistic Systems

    Full text link
    As probabilistic systems gain popularity and are coming into wider use, the need for a mechanism that explains the system's findings and recommendations becomes more critical. The system will also need a mechanism for ordering competing explanations. We examine two representative approaches to explanation in the literature - one due to G\"ardenfors and one due to Pearl - and show that both suffer from significant problems. We propose an approach to defining a notion of "better explanation" that combines some of the features of both together with more recent work by Pearl and others on causality.Comment: Appears in Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI1997

    Relevant Explanations: Allowing Disjunctive Assignments

    Full text link
    Relevance-based explanation is a scheme in which partial assignments to Bayesian belief network variables are explanations (abductive conclusions). We allow variables to remain unassigned in explanations as long as they are irrelevant to the explanation, where irrelevance is defined in terms of statistical independence. When multiple-valued variables exist in the system, especially when subsets of values correspond to natural types of events, the over specification problem, alleviated by independence-based explanation, resurfaces. As a solution to that, as well as for addressing the question of explanation specificity, it is desirable to collapse such a subset of values into a single value on the fly. The equivalent method, which is adopted here, is to generalize the notion of assignments to allow disjunctive assignments. We proceed to define generalized independence based explanations as maximum posterior probability independence based generalized assignments (GIB-MAPs). GIB assignments are shown to have certain properties that ease the design of algorithms for computing GIB-MAPs. One such algorithm is discussed here, as well as suggestions for how other algorithms may be adapted to compute GIB-MAPs. GIB-MAP explanations still suffer from instability, a problem which may be addressed using ?approximate? conditional independence as a condition for irrelevance.Comment: Appears in Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence (UAI1993

    SMILES2Vec: An Interpretable General-Purpose Deep Neural Network for Predicting Chemical Properties

    Full text link
    Chemical databases store information in text representations, and the SMILES format is a universal standard used in many cheminformatics software. Encoded in each SMILES string is structural information that can be used to predict complex chemical properties. In this work, we develop SMILES2vec, a deep RNN that automatically learns features from SMILES to predict chemical properties, without the need for additional explicit feature engineering. Using Bayesian optimization methods to tune the network architecture, we show that an optimized SMILES2vec model can serve as a general-purpose neural network for predicting distinct chemical properties including toxicity, activity, solubility and solvation energy, while also outperforming contemporary MLP neural networks that uses engineered features. Furthermore, we demonstrate proof-of-concept of interpretability by developing an explanation mask that localizes on the most important characters used in making a prediction. When tested on the solubility dataset, it identified specific parts of a chemical that is consistent with established first-principles knowledge with an accuracy of 88%. Our work demonstrates that neural networks can learn technically accurate chemical concept and provide state-of-the-art accuracy, making interpretable deep neural networks a useful tool of relevance to the chemical industry.Comment: Submitted to SIGKDD 201

    Finding dissimilar explanations in Bayesian networks: Complexity results

    Full text link
    Finding the most probable explanation for observed variables in a Bayesian network is a notoriously intractable problem, particularly if there are hidden variables in the network. In this paper we examine the complexity of a related problem, that is, the problem of finding a set of sufficiently dissimilar, yet all plausible, explanations. Applications of this problem are, e.g., in search query results (you won't want 10 results that all link to the same website) or in decision support systems. We show that the problem of finding a 'good enough' explanation that differs in structure from the best explanation is at least as hard as finding the best explanation itself.Comment: Presented at the Benelux AI Conference (BNAIC 2018

    Towards Interrogating Discriminative Machine Learning Models

    Full text link
    It is oftentimes impossible to understand how machine learning models reach a decision. While recent research has proposed various technical approaches to provide some clues as to how a learning model makes individual decisions, they cannot provide users with ability to inspect a learning model as a complete entity. In this work, we propose a new technical approach that augments a Bayesian regression mixture model with multiple elastic nets. Using the enhanced mixture model, we extract explanations for a target model through global approximation. To demonstrate the utility of our approach, we evaluate it on different learning models covering the tasks of text mining and image recognition. Our results indicate that the proposed approach not only outperforms the state-of-the-art technique in explaining individual decisions but also provides users with an ability to discover the vulnerabilities of a learning model

    Using Abduction in Markov Logic Networks for Root Cause Analysis

    Full text link
    IT infrastructure is a crucial part in most of today's business operations. High availability and reliability, and short response times to outages are essential. Thus a high amount of tool support and automation in risk management is desirable to decrease outages. We propose a new approach for calculating the root cause for an observed failure in an IT infrastructure. Our approach is based on Abduction in Markov Logic Networks. Abduction aims to find an explanation for a given observation in the light of some background knowledge. In failure diagnosis, the explanation corresponds to the root cause, the observation to the failure of a component, and the background knowledge to the dependency graph extended by potential risks. We apply a method to extend a Markov Logic Network in order to conduct abductive reasoning, which is not naturally supported in this formalism. Our approach exhibits a high amount of reusability and enables users without specific knowledge of a concrete infrastructure to gain viable insights in the case of an incident. We implemented the method in a tool and illustrate its suitability for root cause analysis by applying it to a sample scenario
    • …
    corecore