48 research outputs found

    Commutative Algorithms Approximate the LLL-distribution

    Get PDF
    Following the groundbreaking Moser-Tardos algorithm for the Lovasz Local Lemma (LLL), a series of works have exploited a key ingredient of the original analysis, the witness tree lemma, in order to: derive deterministic, parallel and distributed algorithms for the LLL, to estimate the entropy of the output distribution, to partially avoid bad events, to deal with super-polynomially many bad events, and even to devise new algorithmic frameworks. Meanwhile, a parallel line of work, has established tools for analyzing stochastic local search algorithms motivated by the LLL that do not fall within the Moser-Tardos framework. Unfortunately, the aforementioned results do not transfer to these more general settings. Mainly, this is because the witness tree lemma, provably, no longer holds. Here we prove that for commutative algorithms, a class recently introduced by Kolmogorov and which captures the vast majority of LLL applications, the witness tree lemma does hold. Armed with this fact, we extend the main result of Haeupler, Saha, and Srinivasan to commutative algorithms, establishing that the output of such algorithms well-approximates the LLL-distribution, i.e., the distribution obtained by conditioning on all bad events being avoided, and give several new applications. For example, we show that the recent algorithm of Molloy for list coloring number of sparse, triangle-free graphs can output exponential many list colorings of the input graph

    LIPIcs

    Get PDF
    The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser and Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for existence of and fast convergence to desirable objects, one may naturally ask further questions regarding properties of these algorithms. For instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?", etc. These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs

    Locating Arrays: Construction, Analysis, and Robustness

    Get PDF
    abstract: Modern computer systems are complex engineered systems involving a large collection of individual parts, each with many parameters, or factors, affecting system performance. One way to understand these complex systems and their performance is through experimentation. However, most modern computer systems involve such a large number of factors that thorough experimentation on all of them is impossible. An initial screening step is thus necessary to determine which factors are relevant to the system's performance and which factors can be eliminated from experimentation. Factors may impact system performance in different ways. A factor at a specific level may significantly affect performance as a main effect, or in combination with other main effects as an interaction. For screening, it is necessary both to identify the presence of these effects and to locate the factors responsible for them. A locating array is a relatively new experimental design that causes every main effect and interaction to occur and distinguishes all sets of d main effects and interactions from each other in the tests where they occur. This design is therefore helpful in screening complex systems. The process of screening using locating arrays involves multiple steps. First, a locating array is constructed for all possibly significant factors. Next, the system is executed for all tests indicated by the locating array and a response is observed. Finally, the response is analyzed to identify the significant system factors for future experimentation. However, simply constructing a reasonably sized locating array for a large system is no easy task and analyzing the response of the tests presents additional difficulties due to the large number of possible predictors and the inherent imbalance in the experimental design itself. Further complications can arise from noise in the system or errors in testing. This thesis has three contributions. First, it provides an algorithm to construct locating arrays using the Lovász Local Lemma with Moser-Tardos resampling. Second, it gives an algorithm to analyze the system response efficiently. Finally, it studies the robustness of the analysis to the heavy-hitters assumption underlying the approach as well as to varying amounts of system noise.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Local computation algorithms for hypergraph coloring – following Beck’s approach

    Get PDF
    We investigate local computation algorithms (LCA) for two-coloring of k-uniform hypergraphs. We focus on hypergraph instances that satisfy strengthened assumption of the Lovász Local Lemma of the form 21−αk(∆+1)e<121−αk (∆ + 1)e < 1, where ∆ is the bound on the maximum edge degree. The main question which arises here is for how large α there exists an LCA that is able to properly color such hypergraphs in polylogarithmic time per query. We describe briefly how upgrading the classical sequential procedure of Beck from 1991 with Moser and Tardos’ Resample yields polylogarithmic LCA that works for α up to 1/4. Then, we present an improved procedure that solves wider range of instances by allowing α up to 1/3

    Improved Bounds for Randomly Colouring Simple Hypergraphs

    Get PDF
    We study the problem of sampling almost uniform proper q-colourings in k-uniform simple hypergraphs with maximum degree ?. For any ? > 0, if k ? 20(1+?)/? and q ? 100?^({2+?}/{k-4/?-4}), the running time of our algorithm is O?(poly(? k)? n^1.01), where n is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun, and Wu, 2021), and does not require ?(log n) colours unlike the work of Frieze and Anastos (2017)

    Improved Distributed Algorithms for the Lovász Local Lemma and Edge Coloring

    Get PDF
    The Lovász Local Lemma is a classic result in probability theory that is often used to prove the existence of combinatorial objects via the probabilistic method. In its simplest form, it states that if we have n ‘bad events’, each of which occurs with probability at most p and is independent of all but d other events, then under certain criteria on p and d, all of the bad events can be avoided with positive probability. While the original proof was existential, there has been much study on the algorithmic Lovász Local Lemma: that is, designing an algorithm which finds an assignment of the underlying random variables such that all the bad events are indeed avoided. Notably, the celebrated result of Moser and Tardos [JACM ’10] also implied an efficient distributed algorithm for the problem, running in O(log2 n) rounds. For instances with low d, this was improved to O(d 2 + logO(1) log n) by Fischer and Ghaffari [DISC ’17], a result that has proven highly important in distributed complexity theory (Chang and Pettie [SICOMP ’19]). We give an improved algorithm for the Lovász Local Lemma, providing a trade-off between the strength of the criterion relating p and d, and the distributed round complexity. In particular, in the same regime as Fischer and Ghaffari’s algorithm, we improve the round complexity to O( d log d + logO(1) log n). At the other end of the trade-off, we obtain a logO(1) log n round complexity for a substantially wider regime than previously known. As our main application, we also give the first logO(1) log n-round distributed algorithm for the problem of ∆+o(∆)-edge coloring a graph of maximum degree ∆. This is an almost exponential improvement over previous results: no prior logo(1) n-round algorithm was known even for 2∆ − 2-edge coloring
    corecore