6,419 research outputs found

    Mosaics from arbitrary stereo video sequences

    Get PDF
    lthough mosaics are well established as a compact and non-redundant representation of image sequences, their application still suffers from restrictions of the camera motion or has to deal with parallax errors. We present an approach that allows construction of mosaics from arbitrary motion of a head-mounted camera pair. As there are no parallax errors when creating mosaics from planar objects, our approach first decomposes the scene into planar sub-scenes from stereo vision and creates a mosaic for each plane individually. The power of the presented mosaicing technique is evaluated in an office scenario, including the analysis of the parallax error

    The DICEMAN description schemes for still images and video sequences

    Get PDF
    To address the problem of visual content description, two Description Schemes (DSs) developed within the context of a European ACTS project known as DICEMAN, are presented. The DSs, designed based on an analogy with well-known tools for document description, describe both the structure and semantics of still images and video sequences. The overall structure of both DSs including the various sub-DSs and descriptors (Ds) of which they are composed is described. In each case, the hierarchical sub-DS for describing structure can be constructed using automatic (or semi-automatic) image/video analysis tools. The hierarchical sub-DSs for describing the semantics, however, are constructed by a user. The integration of the two DSs into a video indexing application currently under development in DICEMAN is also briefly described.Peer ReviewedPostprint (published version

    Computationally Efficient Target Classification in Multispectral Image Data with Deep Neural Networks

    Full text link
    Detecting and classifying targets in video streams from surveillance cameras is a cumbersome, error-prone and expensive task. Often, the incurred costs are prohibitive for real-time monitoring. This leads to data being stored locally or transmitted to a central storage site for post-incident examination. The required communication links and archiving of the video data are still expensive and this setup excludes preemptive actions to respond to imminent threats. An effective way to overcome these limitations is to build a smart camera that transmits alerts when relevant video sequences are detected. Deep neural networks (DNNs) have come to outperform humans in visual classifications tasks. The concept of DNNs and Convolutional Networks (ConvNets) can easily be extended to make use of higher-dimensional input data such as multispectral data. We explore this opportunity in terms of achievable accuracy and required computational effort. To analyze the precision of DNNs for scene labeling in an urban surveillance scenario we have created a dataset with 8 classes obtained in a field experiment. We combine an RGB camera with a 25-channel VIS-NIR snapshot sensor to assess the potential of multispectral image data for target classification. We evaluate several new DNNs, showing that the spectral information fused together with the RGB frames can be used to improve the accuracy of the system or to achieve similar accuracy with a 3x smaller computation effort. We achieve a very high per-pixel accuracy of 99.1%. Even for scarcely occurring, but particularly interesting classes, such as cars, 75% of the pixels are labeled correctly with errors occurring only around the border of the objects. This high accuracy was obtained with a training set of only 30 labeled images, paving the way for fast adaptation to various application scenarios.Comment: Presented at SPIE Security + Defence 2016 Proc. SPIE 9997, Target and Background Signatures I

    Multiperspective mosaics and layered representation for scene visualization

    Get PDF
    This thesis documents the efforts made to implement multiperspective mosaicking for the purpose of mosaicking undervehicle and roadside sequences. For the undervehicle sequences, it is desired to create a large, high-resolution mosaic that may used to quickly inspect the entire scene shot by a camera making a single pass underneath the vehicle. Several constraints are placed on the video data, in order to facilitate the assumption that the entire scene in the sequence exists on a single plane. Therefore, a single mosaic is used to represent a single video sequence. Phase correlation is used to perform motion analysis in this case. For roadside video sequences, it is assumed that the scene is composed of several planar layers, as opposed to a single plane. Layer extraction techniques are implemented in order to perform this decomposition. Instead of using phase correlation to perform motion analysis, the Lucas-Kanade motion tracking algorithm is used in order to create dense motion maps. Using these motion maps, spatial support for each layer is determined based on a pre-initialized layer model. By separating the pixels in the scene into motion-specific layers, it is possible to sample each element in the scene correctly while performing multiperspective mosaicking. It is also possible to fill in many gaps in the mosaics caused by occlusions, hence creating more complete representations of the objects of interest. The results are several mosaics with each mosaic representing a single planar layer of the scene

    3D scene modeling and understanding from image sequences

    Get PDF
    A new method for 3D modeling is proposed, which generates a content-based 3D mosaic (CB3M) representation for long video sequences of 3D, dynamic urban scenes captured by a camera on a mobile platform. In the first phase, a set of parallel-perspective (pushbroom) mosaics with varying viewing directions is generated to capture both the 3D and dynamic aspects of the scene under the camera coverage. In the second phase, a unified patch-based stereo matching algorithm is applied to extract parametric representations of the color, structure and motion of the dynamic and/or 3D objects in urban scenes, where a lot of planar surfaces exist. Multiple pairs of stereo mosaics are used for facilitating reliable stereo matching, occlusion handling, accurate 3D reconstruction and robust moving target detection. The outcome of this phase is a CB3M representation, which is a highly compressed visual representation for a dynamic 3D scene, and has object contents of both 3D and motion information. In the third phase, a multi-layer based scene understanding algorithm is proposed, resulting in a planar surface model for higher-level object representations. Experimental results are given for both simulated and several different real video sequences of large-scale 3D scenes to show the accuracy and effectiveness of the representation. We also show the patch-based stereo matching algorithm and the CB3M representation can be generalized to 3D modeling with perspective views using either a single camera or a stereovision head on a ground mobile platform or a pedestrian. Applications of the proposed method include airborne or ground video surveillance, 3D urban scene modeling, traffic survey, transportation planning and the visual aid for perception and navigation of blind people

    The compression issues of panoramic video

    Get PDF
    The paper proposes efficient data compression techniques for panoramic video. Panoramic videos have been used as a means for representing dynamic scenes or paths along a static environment. They allow the user to change viewpoints interactively at a point in time or space. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission, and make real-time decoding very computationally intensive. A high performance MPEG-like compression algorithm, which takes into account the random access requirements and the redundancies of the panoramic video, is presented. The transmission aspects of panoramic video over cable network, LAN and Internet are also briefly discussed.published_or_final_versio

    Survey of image-based representations and compression techniques

    Get PDF
    In this paper, we survey the techniques for image-based rendering (IBR) and for compressing image-based representations. Unlike traditional three-dimensional (3-D) computer graphics, in which 3-D geometry of the scene is known, IBR techniques render novel views directly from input images. IBR techniques can be classified into three categories according to how much geometric information is used: rendering without geometry, rendering with implicit geometry (i.e., correspondence), and rendering with explicit geometry (either with approximate or accurate geometry). We discuss the characteristics of these categories and their representative techniques. IBR techniques demonstrate a surprising diverse range in their extent of use of images and geometry in representing 3-D scenes. We explore the issues in trading off the use of images and geometry by revisiting plenoptic-sampling analysis and the notions of view dependency and geometric proxies. Finally, we highlight compression techniques specifically designed for image-based representations. Such compression techniques are important in making IBR techniques practical.published_or_final_versio

    On the data compression and transmission aspects of panoramic video

    Get PDF
    This paper proposes efficient data compression and transmission techniques for panoramic video. Panoramic videos have been used as a means for representing dynamic scenes or paths along a static environment. They allow the user to change viewpoints interactively at a point in time or space. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission, and make real-time decoding very compute-intensive. A high performance MPEG-like compression algorithm, which takes into account the random access requirements and the redundancies of the panoramic video, is presented. The transmission aspects of panoramic video over cable network, LAN and Internet are also briefly discussed.published_or_final_versio
    corecore