7,204 research outputs found

    On Affine Reachability Problems

    Get PDF
    We analyze affine reachability problems in dimensions 1 and 2. We show that the reachability problem for 1-register machines over the integers with affine updates is PSPACE-hard, hence PSPACE-complete, strengthening a result by Finkel et al. that required polynomial updates. Building on recent results on two-dimensional integer matrices, we prove NP-completeness of the mortality problem for 2-dimensional integer matrices with determinants +1 and 0. Motivated by tight connections with 1-dimensional affine reachability problems without control states, we also study the complexity of a number of reachability problems in finitely generated semigroups of 2-dimensional upper-triangular integer matrices

    On Nonnegative Integer Matrices and Short Killing Words

    Full text link
    Let nn be a natural number and M\mathcal{M} a set of n×nn \times n-matrices over the nonnegative integers such that the joint spectral radius of M\mathcal{M} is at most one. We show that if the zero matrix 00 is a product of matrices in M\mathcal{M}, then there are M1,…,Mn5∈MM_1, \ldots, M_{n^5} \in \mathcal{M} with M1⋯Mn5=0M_1 \cdots M_{n^5} = 0. This result has applications in automata theory and the theory of codes. Specifically, if X⊂Σ∗X \subset \Sigma^* is a finite incomplete code, then there exists a word w∈Σ∗w \in \Sigma^* of length polynomial in ∑x∈X∣x∣\sum_{x \in X} |x| such that ww is not a factor of any word in X∗X^*. This proves a weak version of Restivo's conjecture.Comment: This version is a journal submission based on a STACS'19 paper. It extends the conference version as follows. (1) The main result has been generalized to apply to monoids generated by finite sets whose joint spectral radius is at most 1. (2) The use of Carpi's theorem is avoided to make the paper more self-contained. (3) A more precise result is offered on Restivo's conjecture for finite code

    Vector Reachability Problem in SL(2,Z)\mathrm{SL}(2,\mathbb{Z})

    Get PDF
    The decision problems on matrices were intensively studied for many decades as matrix products play an essential role in the representation of various computational processes. However, many computational problems for matrix semigroups are inherently difficult to solve even for problems in low dimensions and most matrix semigroup problems become undecidable in general starting from dimension three or four. This paper solves two open problems about the decidability of the vector reachability problem over a finitely generated semigroup of matrices from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}) and the point to point reachability (over rational numbers) for fractional linear transformations, where associated matrices are from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}). The approach to solving reachability problems is based on the characterization of reachability paths between points which is followed by the translation of numerical problems on matrices into computational and combinatorial problems on words and formal languages. We also give a geometric interpretation of reachability paths and extend the decidability results to matrix products represented by arbitrary labelled directed graphs. Finally, we will use this technique to prove that a special case of the scalar reachability problem is decidable

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure

    Decidability of the Membership Problem for 2×22\times 2 integer matrices

    Get PDF
    The main result of this paper is the decidability of the membership problem for 2×22\times 2 nonsingular integer matrices. Namely, we will construct the first algorithm that for any nonsingular 2×22\times 2 integer matrices M1,…,MnM_1,\dots,M_n and MM decides whether MM belongs to the semigroup generated by {M1,…,Mn}\{M_1,\dots,M_n\}. Our algorithm relies on a translation of the numerical problem on matrices into combinatorial problems on words. It also makes use of some algebraical properties of well-known subgroups of GL(2,Z)\mathrm{GL}(2,\mathbb{Z}) and various new techniques and constructions that help to limit an infinite number of possibilities by reducing them to the membership problem for regular languages

    Complexity of stability and controllability of elementary hybrid systems

    Get PDF
    Caption title.Includes bibliographical references (p. 16-18).Supported by ARO. DAAL-03-92-G-0115 Supported by NATO. CRG-961115Vincent D. Blondel, John N. Tsitsiklis

    On the complexity of bounded time and precision reachability for piecewise affine systems

    Full text link
    Reachability for piecewise affine systems is known to be undecidable, starting from dimension 22. In this paper we investigate the exact complexity of several decidable variants of reachability and control questions for piecewise affine systems. We show in particular that the region to region bounded time versions leads to NPNP-complete or co-NPNP-complete problems, starting from dimension 22. We also prove that a bounded precision version leads to PSPACEPSPACE-complete problems
    • …
    corecore