6,968 research outputs found

    On Affine Reachability Problems

    Get PDF
    We analyze affine reachability problems in dimensions 1 and 2. We show that the reachability problem for 1-register machines over the integers with affine updates is PSPACE-hard, hence PSPACE-complete, strengthening a result by Finkel et al. that required polynomial updates. Building on recent results on two-dimensional integer matrices, we prove NP-completeness of the mortality problem for 2-dimensional integer matrices with determinants +1 and 0. Motivated by tight connections with 1-dimensional affine reachability problems without control states, we also study the complexity of a number of reachability problems in finitely generated semigroups of 2-dimensional upper-triangular integer matrices

    Synchronizing weighted automata

    Full text link
    We introduce two generalizations of synchronizability to automata with transitions weighted in an arbitrary semiring K=(K,+,*,0,1). (or equivalently, to finite sets of matrices in K^nxn.) Let us call a matrix A location-synchronizing if there exists a column in A consisting of nonzero entries such that all the other columns of A are filled by zeros. If additionally all the entries of this designated column are the same, we call A synchronizing. Note that these notions coincide for stochastic matrices and also in the Boolean semiring. A set M of matrices in K^nxn is called (location-)synchronizing if M generates a matrix subsemigroup containing a (location-)synchronizing matrix. The K-(location-)synchronizability problem is the following: given a finite set M of nxn matrices with entries in K, is it (location-)synchronizing? Both problems are PSPACE-hard for any nontrivial semiring. We give sufficient conditions for the semiring K when the problems are PSPACE-complete and show several undecidability results as well, e.g. synchronizability is undecidable if 1 has infinite order in (K,+,0) or when the free semigroup on two generators can be embedded into (K,*,1).Comment: In Proceedings AFL 2014, arXiv:1405.527

    On Nonnegative Integer Matrices and Short Killing Words

    Full text link
    Let nn be a natural number and M\mathcal{M} a set of n×nn \times n-matrices over the nonnegative integers such that the joint spectral radius of M\mathcal{M} is at most one. We show that if the zero matrix 00 is a product of matrices in M\mathcal{M}, then there are M1,,Mn5MM_1, \ldots, M_{n^5} \in \mathcal{M} with M1Mn5=0M_1 \cdots M_{n^5} = 0. This result has applications in automata theory and the theory of codes. Specifically, if XΣX \subset \Sigma^* is a finite incomplete code, then there exists a word wΣw \in \Sigma^* of length polynomial in xXx\sum_{x \in X} |x| such that ww is not a factor of any word in XX^*. This proves a weak version of Restivo's conjecture.Comment: This version is a journal submission based on a STACS'19 paper. It extends the conference version as follows. (1) The main result has been generalized to apply to monoids generated by finite sets whose joint spectral radius is at most 1. (2) The use of Carpi's theorem is avoided to make the paper more self-contained. (3) A more precise result is offered on Restivo's conjecture for finite code

    Vector Reachability Problem in SL(2,Z)\mathrm{SL}(2,\mathbb{Z})

    Get PDF
    The decision problems on matrices were intensively studied for many decades as matrix products play an essential role in the representation of various computational processes. However, many computational problems for matrix semigroups are inherently difficult to solve even for problems in low dimensions and most matrix semigroup problems become undecidable in general starting from dimension three or four. This paper solves two open problems about the decidability of the vector reachability problem over a finitely generated semigroup of matrices from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}) and the point to point reachability (over rational numbers) for fractional linear transformations, where associated matrices are from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}). The approach to solving reachability problems is based on the characterization of reachability paths between points which is followed by the translation of numerical problems on matrices into computational and combinatorial problems on words and formal languages. We also give a geometric interpretation of reachability paths and extend the decidability results to matrix products represented by arbitrary labelled directed graphs. Finally, we will use this technique to prove that a special case of the scalar reachability problem is decidable

    Reachability problems for products of matrices in semirings

    Get PDF
    We consider the following matrix reachability problem: given rr square matrices with entries in a semiring, is there a product of these matrices which attains a prescribed matrix? We define similarly the vector (resp. scalar) reachability problem, by requiring that the matrix product, acting by right multiplication on a prescribed row vector, gives another prescribed row vector (resp. when multiplied at left and right by prescribed row and column vectors, gives a prescribed scalar). We show that over any semiring, scalar reachability reduces to vector reachability which is equivalent to matrix reachability, and that for any of these problems, the specialization to any r2r\geq 2 is equivalent to the specialization to r=2r=2. As an application of this result and of a theorem of Krob, we show that when r=2r=2, the vector and matrix reachability problems are undecidable over the max-plus semiring (Z{},max,+)(Z\cup\{-\infty\},\max,+). We also show that the matrix, vector, and scalar reachability problems are decidable over semirings whose elements are ``positive'', like the tropical semiring (N{+},min,+)(N\cup\{+\infty\},\min,+).Comment: 21 page

    Decidability of the Membership Problem for 2×22\times 2 integer matrices

    Get PDF
    The main result of this paper is the decidability of the membership problem for 2×22\times 2 nonsingular integer matrices. Namely, we will construct the first algorithm that for any nonsingular 2×22\times 2 integer matrices M1,,MnM_1,\dots,M_n and MM decides whether MM belongs to the semigroup generated by {M1,,Mn}\{M_1,\dots,M_n\}. Our algorithm relies on a translation of the numerical problem on matrices into combinatorial problems on words. It also makes use of some algebraical properties of well-known subgroups of GL(2,Z)\mathrm{GL}(2,\mathbb{Z}) and various new techniques and constructions that help to limit an infinite number of possibilities by reducing them to the membership problem for regular languages

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure
    corecore