1,479 research outputs found

    A prototype machine translation system between Turkmen and Turkish

    Get PDF
    In this work, we present a prototype system for translation of Turkmen texts into Turkish. Although machine translation (MT) is a very hard task, it is easier to implement a MT system between very close language pairs which have similar syntactic structure and word order. We implement a direct translation system between Turkmen and Turkish which performs a word-to-word transfer. We also use a Turkish Language Model to find the most probable Turkish sentence among all possible candidate translations generated by our system

    Error-tolerant Finite State Recognition with Applications to Morphological Analysis and Spelling Correction

    Get PDF
    Error-tolerant recognition enables the recognition of strings that deviate mildly from any string in the regular set recognized by the underlying finite state recognizer. Such recognition has applications in error-tolerant morphological processing, spelling correction, and approximate string matching in information retrieval. After a description of the concepts and algorithms involved, we give examples from two applications: In the context of morphological analysis, error-tolerant recognition allows misspelled input word forms to be corrected, and morphologically analyzed concurrently. We present an application of this to error-tolerant analysis of agglutinative morphology of Turkish words. The algorithm can be applied to morphological analysis of any language whose morphology is fully captured by a single (and possibly very large) finite state transducer, regardless of the word formation processes and morphographemic phenomena involved. In the context of spelling correction, error-tolerant recognition can be used to enumerate correct candidate forms from a given misspelled string within a certain edit distance. Again, it can be applied to any language with a word list comprising all inflected forms, or whose morphology is fully described by a finite state transducer. We present experimental results for spelling correction for a number of languages. These results indicate that such recognition works very efficiently for candidate generation in spelling correction for many European languages such as English, Dutch, French, German, Italian (and others) with very large word lists of root and inflected forms (some containing well over 200,000 forms), generating all candidate solutions within 10 to 45 milliseconds (with edit distance 1) on a SparcStation 10/41. For spelling correction in Turkish, error-tolerantComment: Replaces 9504031. gzipped, uuencoded postscript file. To appear in Computational Linguistics Volume 22 No:1, 1996, Also available as ftp://ftp.cs.bilkent.edu.tr/pub/ko/clpaper9512.ps.

    A MT System from Turkmen to Turkish employing finite state and statistical methods

    Get PDF
    In this work, we present a MT system from Turkmen to Turkish. Our system exploits the similarity of the languages by using a modified version of direct translation method. However, the complex inflectional and derivational morphology of the Turkic languages necessitate special treatment for word-by-word translation model. We also employ morphology-aware multi-word processing and statistical disambiguation processes in our system. We believe that this approach is valid for most of the Turkic languages and the architecture implemented using FSTs can be easily extended to those languages

    Tactical Generation in a Free Constituent Order Language

    Full text link
    This paper describes tactical generation in Turkish, a free constituent order language, in which the order of the constituents may change according to the information structure of the sentences to be generated. In the absence of any information regarding the information structure of a sentence (i.e., topic, focus, background, etc.), the constituents of the sentence obey a default order, but the order is almost freely changeable, depending on the constraints of the text flow or discourse. We have used a recursively structured finite state machine for handling the changes in constituent order, implemented as a right-linear grammar backbone. Our implementation environment is the GenKit system, developed at Carnegie Mellon University--Center for Machine Translation. Morphological realization has been implemented using an external morphological analysis/generation component which performs concrete morpheme selection and handles morphographemic processes.Comment: gzipped, uuencoded postscript fil

    Rapid Development of Morphological Descriptions for Full Language Processing Systems

    Full text link
    I describe a compiler and development environment for feature-augmented two-level morphology rules integrated into a full NLP system. The compiler is optimized for a class of languages including many or most European ones, and for rapid development and debugging of descriptions of new languages. The key design decision is to compose morphophonological and morphosyntactic information, but not the lexicon, when compiling the description. This results in typical compilation times of about a minute, and has allowed a reasonably full, feature-based description of French inflectional morphology to be developed in about a month by a linguist new to the system.Comment: 8 pages, LaTeX (2.09 preferred); eaclap.sty; Procs of Euro ACL-9
    corecore