22,878 research outputs found

    Binary morphological shape-based interpolation applied to 3-D tooth reconstruction

    Get PDF
    In this paper we propose an interpolation algorithm using a mathematical morphology morphing approach. The aim of this algorithm is to reconstruct the nn-dimensional object from a group of (n-1)-dimensional sets representing sections of that object. The morphing transformation modifies pairs of consecutive sets such that they approach in shape and size. The interpolated set is achieved when the two consecutive sets are made idempotent by the morphing transformation. We prove the convergence of the morphological morphing. The entire object is modeled by successively interpolating a certain number of intermediary sets between each two consecutive given sets. We apply the interpolation algorithm for 3-D tooth reconstruction

    The behavior of adaptive bone-remodeling simulation models

    Get PDF
    The process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to simulate the remodeling process in each element individually is, in fact, an objective function for an optimization process, relative to the external load. Its purpose is to obtain a constant, preset value for the strain energy per unit bone mass, by adapting the density. If an element in the structure cannot achieve that, it either turns to its maximal density (cortical bone) or resorbs completely.\ud \ud It is found that the solution obtained in generally a discontinuous patchwork. For a two-dimensional proximal femur model this patchwork shows a good resemblance with the density distribution of a real proximal femur.\ud \ud It is shown that the discontinuous end configuration is dictated by the nature of the differential equations describing the remodeling process. This process can be considered as a nonlinear dynamical system with many degrees of freedom, which behaves divergent relative to the objective, leading to many possible solutions. The precise solution is dependent on the parameters in the remodeling rule, the load and the initial conditions. The feedback mechanism in the process is self-enhancing; denser bone attracts more strain energy, whereby the bone becomes even more dense. It is suggested that this positive feedback of the attractor state (the strain energy field) creates order in the end configuration. In addition, the process ensures that the discontinuous end configuration is a structure with a relatively low mass, perhaps a minimal-mass structure, although this is no explicit objective in the optimization process.\ud \ud It is hypothesized that trabecular bone is a chaotically ordered structure which can be considered as a fractal with characteristics of optimal mechanical resistance and minimal mass, of which the actual morphology depends on the local (internal) loading characteristics, the sensor-cell density and the degree of mineralization

    A Cosmic Watershed: the WVF Void Detection Technique

    Get PDF
    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the Cosmic Web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic aspects is that of the dominant underdense Voids, the product of a hierarchical process driven by the collapse of minor voids in addition to the merging of large ones. In this study we present an objective void finder technique which involves a minimum of assumptions about the scale, structure and shape of voids. Our void finding method, the Watershed Void Finder (WVF), is based upon the Watershed Transform, a well-known technique for the segmentation of images. Importantly, the technique has the potential to trace the existing manifestations of a void hierarchy. The basic watershed transform is augmented by a variety of correction procedures to remove spurious structure resulting from sampling noise. This study contains a detailed description of the WVF. We demonstrate how it is able to trace and identify, relatively parameter free, voids and their surrounding (filamentary and planar) boundaries. We test the technique on a set of Kinematic Voronoi models, heuristic spatial models for a cellular distribution of matter. Comparison of the WVF segmentations of low noise and high noise Voronoi models with the quantitatively known spatial characteristics of the intrinsic Voronoi tessellation shows that the size and shape of the voids are succesfully retrieved. WVF manages to even reproduce the full void size distribution function.Comment: 24 pages, 15 figures, MNRAS accepted, for full resolution, see http://www.astro.rug.nl/~weygaert/tim1publication/watershed.pd

    The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution

    Get PDF
    We present here a new method, MMF, for automatically segmenting cosmic structure into its basic components: clusters, filaments, and walls. Importantly, the segmentation is scale independent, so all structures are identified without prejudice as to their size or shape. The method is ideally suited for extracting catalogues of clusters, walls, and filaments from samples of galaxies in redshift surveys or from particles in cosmological N-body simulations: it makes no prior assumptions about the scale or shape of the structures.}Comment: Replacement with higher resolution figures. 28 pages, 17 figures. For Full Resolution Version see: http://www.astro.rug.nl/~weygaert/tim1publication/miguelmmf.pd
    • …
    corecore