23 research outputs found

    Application of ANFIS for Distance Relay Protection in Transmission Line

    Get PDF
    The techniques hybrid intelligent was introduced in transmission protection that usage in electric power systems. There was applied ANFIS for distance relay protection particularly for transmission line. If a fault occurs during the transmission line identification caused by unwanted fault thus the power delivery to the consumer becomes not going well. Therefore, it would need to provide an alternative solution to fix this problem. The objective of this paper uses impedance transmission line to determine how long the channel spacing will be protected by distance relay. It has been distance relays when fault occurs in transmission line with the application Sugeno ANFIS. The simulation shows it excellent testing results can be contributed to an alternate algorithm that it has good performance to protecting system in transmission line. This application used by using software Matlab

    Advances of Mathematical Morphology and Its Applications in Signal Processing

    Get PDF
    This thesis describes some advances of Mathematical Morphology (MM), in order to improve the performance of MM filters in I-D signal processing, . especially in the application to power system protection. MM methodologies are founded on set-theoretic concepts and nonlinear superpositions of signals and images. The morphological operations possess outstanding geometrical properties which make it undoubted that they are efficient image processing methods. However in I-D signal processing, MM filters are not widely employed. To explore the applications of MM for I-D signal processing, our contributions in this area can be summarized in the following two aspects. Firstly, the fram.ework of the traditional signal processing methods is based on the frequency domain representation of the signal and the analysis of the operators' transfer function in the frequency domain. But to the morphological operations, their representations in the frequency domain are uncertain. In order to tackle this problem, this thesis presents our attempt to describe the weighted morphological dilation in the frequency domain. Under certain restrictions to the signal and the structuring element, weighted dilation is transformed to a mathematical expression in the frequency domain. Secondly, although the frequency domain analysis plays an important role in signal processing, the geometrical properties of a signal such as the shape of the signal cannot be ignored. MM is an effective method in dealing with such problems. In this thesis, based on the theory of Morphological Wavelet (MW), three multi-resolution signal decomposition schemes are presented. They are Multiresolution Morphological Top-Hat scheme (MMTH), Multi-resolution Morphov logical Gradient scheme (MMG) and Multi-resolution Noise Tolerant Morphological Gradient scheme (MNTMG). The MMTH scheme shows its significant effect in distinguishing symmetrical features from asymmetrical features on the waveform, which owes to its signal analysis operator: morphological Top-Hat transformation, an effective morphological technique. In this thesis, the MMTH scheme is employed in the identification of transformer magnetizing inrush curr~nt from internal fault. Decomposing the signal by MMTH, the asymmetrical features of the inrush waveform are exposed, and the other irrelevant components are attenuated. The MMG scheme adopts morphological gradient, a commonly used operator for edge detection in image and signal processing, as its signal analysis / operator. The MMG scheme bears significant property in characterizing and recognizing the sudden changes with sharp peaks and valleys on the waveform. Furthermore, to the MMG scheme, by decomposing the signal into different levels, the higher the level is processed, the more details of the sudden changes are revealed. In this thesis, the MMG scheme is applied for the design of fault locator of power transmission lines, by extracting the transient features directly from fault-generated transient signals. The MNTMG decomposition scheme can effectively reduce the noise and extract transient features at the same time. In this thesis, the MNTMG scheme is applied to extract the fault generated transient wavefronts from noise imposed signals in the application of fault location of power transmission lines. The proposed contributions focus on the effect of weighted dilation in the frequency domain, constructions of morphological multi-resolution decomposition schemes and their applications in power systems

    Computing Intelligence Technique and Multiresolution Data Processing for Condition Monitoring

    Get PDF
    Condition monitoring (CM) of rotary machines has gained increasing importance and extensive research in recent years. Due to the rapid growth of data volume, automated data processing is necessary in order to deal with massive data efficiently to produce timely and accurate diagnostic results. Artificial intelligence (AI) and adaptive data processing approaches can be promising solutions to the challenge of large data volume. Unfortunately, the majority of AI-based techniques in CM have been developed for only the post-processing (classification) stage, whereas the critical tasks including feature extraction and selection are still manually processed, which often require considerable time and efforts but also yield a performance depending on prior knowledge and diagnostic expertise. To achieve an automatic data processing, the research of this PhD project provides an integrated framework with two main approaches. Firstly, it focuses on extending AI techniques in all phases, including feature extraction by applying Componential Coding Neural Network (CCNN) which has been found to have unique properties of being trained through unsupervised learning, capable of dealing with raw datasets, translation invariance and high computational efficiency. These advantages of CCNN make it particularly suitable for automated analyzing of the vibration data arisen from typical machine components such as the rolling element bearings which exhibit periodic phenomena with high non-stationary and strong noise contamination. Then, once an anomaly is detected, a further analysis technique to identify the fault is proposed using a multiresolution data analysis approach based on Double-Density Discrete Wavelet Transform (DD-DWT) which was grounded on over-sampled filter banks with smooth tight frames. This makes it nearly shift-invariant which is important for extracting non-stationary periodical peaks. Also, in order to denoise and enhance the diagnostic features, a novel level-dependant adaptive thresholding method based on harmonic to signal ratio (HSR) is developed and implemented on the selected wavelet coefficients. This method has been developed to be a semi-automated (adaptive) approach to facilitate the process of fault diagnosis. The developed framework has been evaluated using both simulated and measured datasets from typical healthy and defective tapered roller bearings which are critical parts of all rotating machines. The results have demonstrated that the CCNN is a robust technique for early fault detection, and also showed that adaptive DD-DWT is a robust technique for diagnosing the faults induced to test bearings. The developed framework has achieved multi-objectives of high detection sensitivity, reliable diagnosis and minimized computing complexity

    Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid With Renewable Energy Penetration

    Get PDF
    The global concern with power quality is increasing due to the penetration of renewable energy (RE) sources to cater the energy demands and meet de-carbonization targets. Power quality (PQ) disturbances are found to be more predominant with RE penetration due to the variable outputs and interfacing converters. There is a need to recognize and mitigate PQ disturbances to supply clean power to the consumer. This article presents a critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration. The broad perspective of this review paper is to provide various concepts utilized for extraction of the features to detect and classify the PQ disturbances even in the noisy environment. More than 220 research publications have been critically reviewed, classified and listed for quick reference of the engineers, scientists and academicians working in the power quality area

    Proposal for a Time-Dependent Dynamic Identification Algorithm for Structural Health Monitoring

    Get PDF
    This paper describes the design, test and validation processes of a dynamicidentification algorithm aimed at the time-dependent assessment of modern structures and heritage buildings for civil and seismic engineering purposes. Full validation of the algorithm is performed through analysis of numerically simulated data from an idealized masonry tower. Making use of output-only vibration measurements, the non-parametric algorithm can generate dynamic features results as time-dependent functions for the complete observation period. The algorithm can work in the presence of different dynamic loads and non-linear structural behaviours, close spectral frequency components and noisecontaminated data. Time-dependent structural dynamic parameters that can be computed are modal frequencies, modal displacements, modal curvatures, and higher derivatives of mode shapes. The proposed algorithm aims to be used as the core estimator of timedependent identification methods devoted to the health monitoring of structures and infrastructures, being suitable for a multitude of tasks ranging from the simple operational modal analysis (in pre and post-event condition) to the complex online assessment of the structural response during seismic events for rapid damage identification

    Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings : a review

    Get PDF
    A rolling bearing is an essential component of a rotating mechanical transmission system. Its performance and quality directly affects the life and reliability of machinery. Bearings’ performance and reliability need high requirements because of a more complex and poor working conditions of bearings. A bearing with high reliability reduces equipment operation accidents and equipment maintenance costs and achieves condition-based maintenance. First in this paper, the development of technology of the main individual physical condition monitoring and fault diagnosis of rolling bearings are introduced, then the fault diagnosis technology of multi-sensors information fusion is introduced, and finally, the advantages, disadvantages, and trends developed in the future of the detection main individual physics technology and multi-sensors information fusion technology are summarized. This paper is expected to provide the necessary basis for the follow-up study of the fault diagnosis of rolling bearings and a foundational knowledge for researchers about rolling bearings.The Natural Science Foundation of China (NSFC) (grant numbers: 51675403, 51275381 and 51505475), National Research Foundation, South Africa (grant numbers: IFR160118156967 and RDYR160404161474), and UOW Vice-Chancellor’s Postdoctoral Research Fellowship.International Journal of Advanced Manufacturing Technology2019-04-01hj2018Electrical, Electronic and Computer Engineerin
    corecore