7,204 research outputs found

    Coding of details in very low bit-rate video systems

    Get PDF
    In this paper, the importance of including small image features at the initial levels of a progressive second generation video coding scheme is presented. It is shown that a number of meaningful small features called details should be coded, even at very low data bit-rates, in order to match their perceptual significance to the human visual system. We propose a method for extracting, perceptually selecting and coding of visual details in a video sequence using morphological techniques. Its application in the framework of a multiresolution segmentation-based coding algorithm yields better results than pure segmentation techniques at higher compression ratios, if the selection step fits some main subjective requirements. Details are extracted and coded separately from the region structure and included in the reconstructed images in a later stage. The bet of considering the local background of a given detail for its perceptual selection breaks the concept ofPeer ReviewedPostprint (published version

    Morphological operators for very low bit rate video coding

    Get PDF
    This paper deals with the use of some morphological tools for video coding at very low bit rates. Rather than describing a complete coding algorithm, the purpose of this paper is to focus on morphological connected operators and segmentation tools that have proved to be attractive for compression.Peer ReviewedPostprint (published version

    Strong edge features for image coding

    Get PDF
    A two-component model is proposed for perceptual image coding. For the first component of the model, the watershed operator is used to detect strong edge features. Then, an efficient morphological interpolation algorithm reconstructs the smooth areas of the image from the extracted edge information, also known as sketch data. The residual component, containing fine textures, is separately coded by a subband coding scheme. The morphological operators involved in the coding of the primary component perform very efficiently compared to conventional techniques like the LGO operator, used for the edge extraction, or the diffusion filters, iteratively applied for the interpolation of smooth areas in previously reported sketch-based coding schemes.Peer ReviewedPostprint (published version

    Morphological filter for lossless image subsampling

    Get PDF
    We present a morphological filter for lossless image subsampling for a given downsampling-upsampling strategy. This filter is applied in a multiresolution decomposition and results in a more efficient scheme for image coding purposes than other lossy sampling schemes. Its main advantage is a greatly reduced computational load compared to multiresolution schemes performed with linear filters.Peer ReviewedPostprint (published version

    Hierarchical morphological segmentation for image sequence coding

    Get PDF
    This paper deals with a hierarchical morphological segmentation algorithm for image sequence coding. Mathematical morphology is very attractive for this purpose because it efficiently deals with geometrical features such as size, shape, contrast, or connectivity that can be considered as segmentation-oriented features. The algorithm follows a top-down procedure. It first takes into account the global information and produces a coarse segmentation, that is, with a small number of regions. Then, the segmentation quality is improved by introducing regions corresponding to more local information. The algorithm, considering sequences as being functions on a 3-D space, directly segments 3-D regions. A 3-D approach is used to get a segmentation that is stable in time and to directly solve the region correspondence problem. Each segmentation stage relies on four basic steps: simplification, marker extraction, decision, and quality estimation. The simplification removes information from the sequence to make it easier to segment. Morphological filters based on partial reconstruction are proven to be very efficient for this purpose, especially in the case of sequences. The marker extraction identifies the presence of homogeneous 3-D regions. It is based on constrained flat region labeling and morphological contrast extraction. The goal of the decision is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a modified watershed algorithm. Finally, the quality estimation concentrates on the coding residue, all the information about the 3-D regions that have not been properly segmented and therefore coded. The procedure allows the introduction of the texture and contour coding schemes within the segmentation algorithm. The coding residue is transmitted to the next segmentation stage to improve the segmentation and coding quality. Finally, segmentation and coding examples are presented to show the validity and interest of the coding approach.Peer ReviewedPostprint (published version

    An efficient technique of texture representation in segmentation-based image coding schemes

    Get PDF
    In segmentation-based image coding techniques the image to be compressed is first segmented. Then, the information is coded describing the shape and the interior of the regions. A new method to encode the texture obtained in segmentation-based coding schemes is presented. The approach combines 2-D linear prediction and stochastic vector quantization. To encode a texture, a linear predictor is computed first. Next, a codebook following the prediction error model is generated and the prediction error is encoded with VQ. In the decoder, the error image is decoded first and then filtered as a whole, using the prediction filter. Hence, correlation between pixels is not lost from one block to another and a good reproduction quality can be achieved.Peer ReviewedPostprint (published version

    A hierarchical genetic disparity estimation algorithm for multiview image synthesis

    Get PDF

    Connected operators for sprite creation and layered representation of image sequences

    Get PDF
    This paper proposes and discusses the use of motion-oriented connected operators for sprite creation. Motion-oriented connected operators are tools allowing the simplification of frames by removing objects that do not follow a given motion. They combine features of filtering and segmentation tools. They are, however, less computationally expensive than most motion-oriented segmentation algorithms. In this paper, we show how they can be used to efficiently remove outliers with respect to the dominant motion and to create layered representation of sequences.Peer ReviewedPostprint (published version

    Cellular neural networks, Navier-Stokes equation and microarray image reconstruction

    Get PDF
    Copyright @ 2011 IEEE.Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier–Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time
    • …
    corecore