8,870 research outputs found

    Morphological feature extraction for statistical learning with applications to solar image data

    Get PDF
    Abstract: Many areas of science are generating large volumes of digital image data. In order to take full advantage of the high-resolution and high-cadence images modern technology is producing, methods to automatically process and analyze large batches of such images are needed. This involves reducing complex images to simple representations such as binary sketches or numerical summaries that capture embedded scientific information. Using techniques derived from mathematical morphology, we demonstrate how to reduce solar images into simple ‘sketch ’ representations and numerical summaries that can be used for statistical learning. We demonstrate our general techniques on two specific examples: classifying sunspot groups and recognizing coronal loop structures. Our methodology reproduces manual classifications at an overall rate of 90 % on a set of 119 magnetogram and white light images of sunspot groups. We also show that our methodology is competitive with other automated algorithms at producing coronal loop tracings and demonstrate robustness through noise simulations. 2013 Wile

    Image patch analysis and clustering of sunspots: a dimensionality reduction approach

    Full text link
    Sunspots, as seen in white light or continuum images, are associated with regions of high magnetic activity on the Sun, visible on magnetogram images. Their complexity is correlated with explosive solar activity and so classifying these active regions is useful for predicting future solar activity. Current classification of sunspot groups is visually based and suffers from bias. Supervised learning methods can reduce human bias but fail to optimally capitalize on the information present in sunspot images. This paper uses two image modalities (continuum and magnetogram) to characterize the spatial and modal interactions of sunspot and magnetic active region images and presents a new approach to cluster the images. Specifically, in the framework of image patch analysis, we estimate the number of intrinsic parameters required to describe the spatial and modal dependencies, the correlation between the two modalities and the corresponding spatial patterns, and examine the phenomena at different scales within the images. To do this, we use linear and nonlinear intrinsic dimension estimators, canonical correlation analysis, and multiresolution analysis of intrinsic dimension.Comment: 5 pages, 7 figures, accepted to ICIP 201

    Uneven illumination surface defects inspection based on convolutional neural network

    Full text link
    Surface defect inspection based on machine vision is often affected by uneven illumination. In order to improve the inspection rate of surface defects inspection under uneven illumination condition, this paper proposes a method for detecting surface image defects based on convolutional neural network, which is based on the adjustment of convolutional neural networks, training parameters, changing the structure of the network, to achieve the purpose of accurately identifying various defects. Experimental on defect inspection of copper strip and steel images shows that the convolutional neural network can automatically learn features without preprocessing the image, and correct identification of various types of image defects affected by uneven illumination, thus overcoming the drawbacks of traditional machine vision inspection methods under uneven illumination

    Improvements on coronal hole detection in SDO/AIA images using supervised classification

    Full text link
    We demonstrate the use of machine learning algorithms in combination with segmentation techniques in order to distinguish coronal holes and filaments in SDO/AIA EUV images of the Sun. Based on two coronal hole detection techniques (intensity-based thresholding, SPoCA), we prepared data sets of manually labeled coronal hole and filament channel regions present on the Sun during the time range 2011 - 2013. By mapping the extracted regions from EUV observations onto HMI line-of-sight magnetograms we also include their magnetic characteristics. We computed shape measures from the segmented binary maps as well as first order and second order texture statistics from the segmented regions in the EUV images and magnetograms. These attributes were used for data mining investigations to identify the most performant rule to differentiate between coronal holes and filament channels. We applied several classifiers, namely Support Vector Machine, Linear Support Vector Machine, Decision Tree, and Random Forest and found that all classification rules achieve good results in general, with linear SVM providing the best performances (with a true skill statistic of ~0.90). Additional information from magnetic field data systematically improves the performance across all four classifiers for the SPoCA detection. Since the calculation is inexpensive in computing time, this approach is well suited for applications on real-time data. This study demonstrates how a machine learning approach may help improve upon an unsupervised feature extraction method.Comment: in press for SWS

    Unsupervised spectral sub-feature learning for hyperspectral image classification

    Get PDF
    Spectral pixel classification is one of the principal techniques used in hyperspectral image (HSI) analysis. In this article, we propose an unsupervised feature learning method for classification of hyperspectral images. The proposed method learns a dictionary of sub-feature basis representations from the spectral domain, which allows effective use of the correlated spectral data. The learned dictionary is then used in encoding convolutional samples from the hyperspectral input pixels to an expanded but sparse feature space. Expanded hyperspectral feature representations enable linear separation between object classes present in an image. To evaluate the proposed method, we performed experiments on several commonly used HSI data sets acquired at different locations and by different sensors. Our experimental results show that the proposed method outperforms other pixel-wise classification methods that make use of unsupervised feature extraction approaches. Additionally, even though our approach does not use any prior knowledge, or labelled training data to learn features, it yields either advantageous, or comparable, results in terms of classification accuracy with respect to recent semi-supervised methods

    Image patch analysis of sunspots and active regions. II. Clustering via matrix factorization

    Full text link
    Separating active regions that are quiet from potentially eruptive ones is a key issue in Space Weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature prevents systematic studies of an active region's evolution for example. We introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. We use a reduced-dimension representation of an active region that is obtained by factoring the corresponding data matrix comprised of local image patches. Two factorizations can be compared via the definition of appropriate metrics on the resulting factors. The distances obtained from these metrics are then used to cluster the active regions. We find that these metrics result in natural clusterings of active regions. The clusterings are related to large scale descriptors of an active region such as its size, its local magnetic field distribution, and its complexity as measured by the Mount Wilson classification scheme. We also find that including data focused on the neutral line of an active region can result in an increased correspondence between our clustering results and other active region descriptors such as the Mount Wilson classifications and the RR value. We provide some recommendations for which metrics, matrix factorization techniques, and regions of interest to use to study active regions.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC). 33 pages, 12 figure

    Local Defects in colloidal quantum dot thin films measured via spatially resolved multi-modal optoelectronic spectroscopy.

    Full text link
    The morphology, chemical composition, and electronic uniformity of thin-film solution-processed optoelectronics are believed to greatly affect device performance. Although scanning probe microscopies can address variations on the micrometer scale, the field of view is still limited to well under the typical device area, as well as the size of extrinsic defects introduced during fabrication. Herein, a micrometer-resolution 2D characterization method with millimeter-scale field of view is demonstrated, which simultaneously collects photoluminescence spectra, photocurrent transients, and photovoltage transients. This high-resolution morphology mapping is used to quantify the distribution and strength of the local optoelectronic property variations in colloidal quantum dot solar cells due to film defects, physical damage, and contaminants across nearly the entire test device area, and the extent to which these variations account for overall performance losses. It is found that macroscopic defects have effects that are confined to their localized areas, rarely prove fatal for device performance, and are largely not responsible for device shunting. Moreover, quantitative analysis based on statistical partitioning methods of such data is used to show how defect identification can be automated while identifying variations in underlying properties such as mobilities and recombination strengths and the mechanisms by which they govern device behavior.DMR-1807342 - National Science Foundation; Hopkins Extreme Materials InstituteAccepted manuscrip

    Extracting individual contributions from their mixture: a blind source separation approach, with examples from space and laboratory plasmas

    Full text link
    Multipoint or multichannel observations in plasmas can frequently be modelled as an instantaneous mixture of contributions (waves, emissions, ...) of different origins. Recovering the individual sources from their mixture then becomes one of the key objectives. However, unless the underlying mixing processes are well known, these situations lead to heavily underdetermined problems. Blind source separation aims at disentangling such mixtures with the least possible prior information on the sources and their mixing processes. Several powerful approaches have recently been developed, which can often provide new or deeper insight into the underlying physics. This tutorial paper briefly discusses some possible applications of blind source separation to the field of plasma physics, in which this concept is still barely known. Two examples are given. The first one shows how concurrent processes in the dynamical response of the electron temperature in a tokamak can be separated. The second example deals with solar spectral imaging in the Extreme UV and shows how empirical temperature maps can be built.Comment: expanded version of an article to appear in Contributions to Plasma Physics (2010
    • …
    corecore