350 research outputs found

    Colour Morphology with Application to Image Magnification

    Get PDF
    Mathematische morfologie is een theorie voor de analyse van ruimtelijke structuren, gebaseerd op verzamelingenleer en het begrip verschuiving. In de jaren zestig voerden G. Matheron en J. Serra, beiden geïnspireerd door de studie naar de geometrische vorm van poreus medium, het begrip mathematische morfologie in. Poreus medium is binair in de zin dat een punt van poreus medium ofwel deel uitmaakt van een porie ofwel behoort tot de grondmassa rond de poriën. Zo ontwikkelden Matheron en Serra een theorie voor de analyse van binaire beelden. De grondmassa kan beschouwd worden als de verzameling van objectpunten in het beeld, terwijl de poriën het complement van deze verzameling vormen. Bijgevolg kunnen objectpunten behandeld worden met eenvoudige bewerkingen zoals unie, doorsnede, complement en verschuiving. Mathematische morfologie werd oorspronkelijk dus enkel voor binaire beelden ontwikkeld. Op deze manier legden Matheron en Serra alvast de basis voor mathematische morfologie in de beeldanalyse. Vandaag de dag heeft mathematische morfologie vele toepassingen in de beeldanalyse zoals randdetectie, ruisverwijdering, objectherkenning, patroonherkenning, beeldsegmentatie en beeldvergroting in o.a. de biologische en medische wereld. De basiswerktuigen van mathematische morfologie zijn de morfologische operatoren die een gegeven beeld AA dat we willen analyseren omzet naar een nieuw beeld P(A,B)P(A,B) gebruik makend van een structuurelement BB, om zo bijkomende informatie over de vorm, grootte, oriëntatie of beeldafmetingen van voorwerpen in AA te verkrijgen. Behalve de schijfjes- en umbrabenadering kan binaire morfologie uitgebreid worden naar morfologie voor grijswaardenbeelden door gebruik te maken van vaagverzamelingenleer, vaagmorfologie genoemd. De toepassing van morfologische operatoren op kleurenbeelden is zeker niet voor de hand liggend. En daarover handelt dit proefschrift. We hebben onze nieuwe kleurenmorfologische aanpak toegepast op het vergroten van zwart-wit beelden en kleurenbeelden met scherpe randen en onscherpe randen

    Continuous volumetric imaging via an optical phase-locked ultrasound lens

    No full text
    In vivo imaging at high spatiotemporal resolution is key to the understanding of complex biological systems. We integrated an optical phase-locked ultrasound lens into a two-photon fluorescence microscope and achieved microsecond-scale axial scanning, thus enabling volumetric imaging at tens of hertz. We applied this system to multicolor volumetric imaging of processes sensitive to motion artifacts, including calcium dynamics in behaving mouse brain and transient morphology changes and trafficking of immune cells

    Mathematische morfologie in de beeldverwerking Mathematical Morphology in Image Processing

    Get PDF
    Het verwerken van een afbeelding met de computer laat ons toe de kwaliteit van dit beeld te verbeteren, specifieke objecten uit het beeld te segmenteren, of extra informatie tevoorschijn te halen. Mathematische morfologie is een set van wiskundige technieken uit de beeldverwerking die ons toelaat (de vormen in) beelden te analyseren. Dit proefschrift levert oplossingen voor een aantal problemen uit de beeldverwerking, met behulp van mathematische morfologie. Morfologie toepassen op zwart-wit- of grijswaardenbeelden is relatief eenvoudig, maar de theorie uitbreiden voor kleurbeelden stelt een aantal problemen. Aangezien een kleurbeeld veel meer nuttige informatie kan bevatten dan een grijswaardenbeeld, is zo'n uitbreiding wenselijk. We stellen het meerderheidsordeningsschema (MSS) voor, wat ons toelaat kleuren onderling te ordenen op een logische manier. Morfologische beeldverwerking met kleuren wordt dan mogelijk. Een ander onderzoek betreft polymeren en composieten. Deze materialen worden als glijlagers gebruikt in allerhande voorwerpen, zoals huishoudtoestellen, sluizen, poorten, etc. Vandaar dat de studie van de slijtage hiervan belangrijk is. We gaan na of het morfologische patroonspectrum, alsook vergelijkbare technieken, een bijdrage kan leveren aan het wrijvingsonderzoek van dergelijke materialen. Dit zou de snelheid en efficiëntie van de analyses kunnen verbeteren. We merken op dat de spectrale parameters interessante verbanden vertonen met de parameters van de proefopstelling. Het derde luik van de thesis betreft het ontwikkelen van een interpolatietechniek voor zwart-wit-beelden, gebaseerd op mathematische morfologie, genaamd mmINT. Interpolatie is nodig wanneer we wensen in te zoomen op een beeld of de resolutie van het beeld willen vergroten. Dit kan van pas komen wanneer we ingescande of gedownloade tekeningen van slechte kwaliteit (te lage resolutie) willen verbeteren. mmINT werkt aanzienlijk beter dan bestaande methodes. We ontwikkelden ook een snelle variant, mmINTone, en een uitbreiding voor grijswaardenbeelden, mmINTg

    Tissue thickness measurement tool for craniofacial reconstruction

    Get PDF
    Craniofacial Reconstruction is a method of recreating the appearance of the face on the skull of a deceased individual for identification purposes. Older clay methods of reconstruction are inaccurate, time consuming and inflexible. The tremendous increase in the processing power of the computers and rapid strides in visualization can be used to perform the reconstruction, saving time and providing greater accuracy and flexibility, without the necessity for a skillful modeler.;This thesis introduces our approach to computerized 3D craniofacial reconstruction. Three phases have been identified. The first phase of the project is to generate a facial tissue thickness database. In the second phase this database along with a 3D facial components database is to be used to generate a generic facial mask which is draped over the skull to recreate the facial appearance. This face is to be identified from a database of images in the third phase.;Tissue thickness measurements are necessary to generate the facial model over the skull. The thesis emphasis is on the first phase of the project. An automated facial tissue thickness measurement tool (TTMT) has been developed to populate this database

    Towards a filmic look and feel in real time computer graphics

    Get PDF
    Film footage has a distinct look and feel that audience can instantly recognize, making its replication desirable for computer generated graphics. This thesis presents methods capable of replicating significant portions of the film look and feel while being able to fit within the constraints imposed by real-time computer generated graphics on consumer hardware

    Segmentation of Retinal Vasculature using Active Contour Models (Snakes)

    Get PDF
    Characteristic of retinal vasculature has been an important indicator for many diseases such as hypertension and diabetes. A digital image analysis system can assist medical experts to make accurate diagnosis in an efficient manner. This project presents the computer based approach to the automated segmentation of blood vessels in retinal images. The detection of the retinal vessel is achieved by performing image enhancement using CLAHE followed by Bottom-hat morphological transformation. Active contour model (snake) that based on level sets, techniques of curve evolution, and Mumford-Shah functional for segmentation is then used to segment out the detected retinal vessel and produce a complete retinal vasculature. A Graphic User Interface (GUI) has also been created to ease the user for the segmentation of the retinal vasculature. The algorithm is then tested with 20 test images from the DRIVE database. The results shows that the algorithm outperforms many other published methods and achieved an accuracy (ability to detect both vessel and non-vessel pixels) range of 0.92-0.94, a sensitivity (ability to detect vessel pixels) range of 0.91-0.95 and a specificity (ability to detect non-vessel pixels) range of0.78-0.85. I

    Resolution-enhanced Digital Epiluminescence Microscopy Using Deep Computational Optics

    Get PDF
    Melanoma is the most common type of cancer, and the standard practice used for examining skin lesions is dermoscopy, where dermatologists use an epiluminescence microscope (ELM) to visualize the skin's surface and subsurface structures for anomalies. Conventional ELM instruments are being replaced by digital ELM instruments that enable dermatologists and other health care practitioners to digitally capture, archive, and analyze skin lesions using computer-aided diagnosis (CAD) software. One of the limiting factors of digital ELMs is a trade-off between spatial resolution and field of view (FOV), where a large FOV, which is needed to allow for larger skin lesions to be examined in their entirety, can be achieved by reducing magnification at the cost of spatial resolution (leading to a loss of fine details that can be indicative of malignancy and disease). In this thesis, we introduced the deep computation optics (DCO) framework for the purpose of resolution-enhanced digital ELM to improve the balance between spatial resolution and FOV. More specifically, the multitude of parameters of a deep computational model for numerically magnifying digital ELM images were learned through a wealth of low-resolution and high-resolution digital ELM image pairs. The proposed DCO approaches were experimentally validated, demonstrating improvements in the spatial resolution of the resolution-enhanced digital ELM when compared to more conventional methods, such as bicubic interpolation. Furthermore, we have demonstrated that the spatial resolution-enhancement improvements can be made within the deep computational models themselves where the model's receptive field is of the utmost importance since the missing information is better estimated when there is a larger number of neighbouring pixels involved

    High resolution laboratory x-ray tomography for biomedical research : From design to application

    Get PDF
    Laboratory x-ray micro- and nano-tomography are emerging techniques in biomedical research. Through the use of phase-contrast, sufficient contrast can be achieved in soft tissue to support medical studies. With ongoing developments of x-ray sources and detectors, biomedical studies can increasingly be performed at the laboratory and do not necessary require synchrotron radiation. Particularly nano-focus x-ray sources offer new possibilities for the study of soft tissue. However, with increasing resolution, the complexity and stability requirements on laboratory systems advance as well. This thesis describes the design and implementation of two systems: a micro- CT and a nano-CT, which are used for biomedical imaging.To increase the resolution of the micro-CT, super-resolution imaging is adopted and evaluated for x-ray ima- ging, grating-based imaging and computed tomography utilising electromagnetic stepping of the x-ray source to acquire shifted low-resolution images to estimate a high-resolution image. The experiments have shown that super-resolution can significantly improve the resolution in 2D and 3D imaging, but also that upscaling during the reconstruction can be a viable approach in tomography, which does not require additional images.Element-specific information can be obtained by using photon counting detectors with energy-discriminating thresholds. By performing a material decomposition, a dataset can be split into multiple different materials. Tissue contains a variety of elements with absorption edges in the range of 4 – 11 keV, which can be identified by placing energy thresholds just below and above these edges, as we have demonstrated using human atherosclerotic plaques.An evaluation of radiopaque dyes as alternative contrast agent to identify vessels in lung tissue was performed using phase contrast micro-tomography. We showed that the dye solutions have a sufficiently low density to not cause any artefacts while still being able to separate them from the tissue and distinguish them from each other.Finally, the design and implementation of the nano-CT system is discussed. The system performance is assessed in 2D and 3D, achieving sub-micron resolution and satisfactory tissue contrast through phase contrast. Applica- tion examples are presented using lung tissue, a mouse heart, and freeze dried leaves
    • …
    corecore