1,507 research outputs found

    Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation

    Get PDF
    Automated segmentation of cells from cervical smears poses great challenge to biomedical image analysis because of the noisy and complex background, poor cytoplasmic contrast and the presence of fuzzy and overlapping cells. In this paper, we propose an automated segmentation method for the nucleus and cytoplasm in a cluster of cervical cells based on distinctive local features and guided sparse shape deformation. Our proposed approach is performed in two stages: segmentation of nuclei and cellular clusters, and segmentation of overlapping cytoplasm. In the rst stage, a set of local discriminative shape and appearance cues of image superpixels is incorporated and classi ed by the Support Vector Machine (SVM) to segment the image into nuclei, cellular clusters, and background. In the second stage, a robust shape deformation framework is proposed, based on Sparse Coding (SC) theory and guided by representative shape features, to construct the cytoplasmic shape of each overlapping cell. Then, the obtained shape is re ned by the Distance Regularized Level Set Evolution (DRLSE) model. We evaluated our approach using the ISBI 2014 challenge dataset, which has 135 synthetic cell images for a total of 810 cells. Our results show that our approach outperformed existing approaches in segmenting overlapping cells and obtaining accurate nuclear boundaries. Keywords: overlapping cervical smear cells, feature extraction, sparse coding, shape deformation, distance regularized level set

    Multi-Pass Fast Watershed for Accurate Segmentation of Overlapping Cervical Cells

    Get PDF

    ACME: Automatic feature extraction for cell migration examination through intravital microscopy imaging.

    Get PDF
    Cell detection and tracking applied to in vivo fluorescence microscopy has become an essential tool in biomedicine to characterize 4D (3D space plus time) biological processes at the cellular level. Traditional approaches to cell motion analysis by microscopy imaging, although based on automatic frameworks, still require manual supervision at some points of the system. Hence, when dealing with a large amount of data, the analysis becomes incredibly time-consuming and typically yields poor biological information. In this paper, we propose a fully-automated system for segmentation, tracking and feature extraction of migrating cells within blood vessels in 4D microscopy imaging. Our system consists of a robust 3D convolutional neural network (CNN) for joint blood vessel and cell segmentation, a 3D tracking module with collision handling, and a novel method for feature extraction, which takes into account the particular geometry in the cell-vessel arrangement. Experiments on a large 4D intravital microscopy dataset show that the proposed system achieves a significantly better performance than the state-of-the-art tools for cell segmentation and tracking. Furthermore, we have designed an analytical method of cell behaviors based on the automatically extracted features, which supports the hypotheses related to leukocyte migration posed by expert biologists. This is the first time that such a comprehensive automatic analysis of immune cell migration has been performed, where the total population under study reaches hundreds of neutrophils and thousands of time instances.This work has been partially supported by the National Grant TEC2017-84395-P of the Spanish Ministry of Economy and Competitiveness, Madrid Regional Government and Universidad Carlos III de Madrid through the project SHARON-CM-UC3M, RTI2018- 095497-B-I00 from Ministerio de Ciencia e Innovación (MICINN) and HR17_00527 from Fundación La Caixa to A.H. M.M-M. is supported by the Spanish Ministry of Education, Culture and Sports FPU Grant FPU18/02825. M.P-S. is supported by a Federation of European Biochemical Societies long-term fellowship. J.S. is supported by a fellowship (PRE2019-089130) from MICINN.S

    DeepACSON automated segmentation of white matter in 3D electron microscopy

    Get PDF
    Tracing the entirety of ultrastructures in large three-dimensional electron microscopy (3D-EM) images of the brain tissue requires automated segmentation techniques. Current segmentation techniques use deep convolutional neural networks (DCNNs) and rely on high-contrast cellular membranes and high-resolution EM volumes. On the other hand, segmenting low-resolution, large EM volumes requires methods to account for severe membrane discontinuities inescapable. Therefore, we developed DeepACSON, which performs DCNN-based semantic segmentation and shape-decomposition-based instance segmentation. DeepACSON instance segmentation uses the tubularity of myelinated axons and decomposes under-segmented myelinated axons into their constituent axons. We applied DeepACSON to ten EM volumes of rats after sham-operation or traumatic brain injury, segmenting hundreds of thousands of long-span myelinated axons, thousands of cell nuclei, and millions of mitochondria with excellent evaluation scores. DeepACSON quantified the morphology and spatial aspects of white matter ultrastructures, capturing nanoscopic morphological alterations five months after the injury. With DeepACSON, Abdollahzadeh et al. combines existing deep learning-based methods for semantic segmentation and a novel shape decomposition technique for the instance segmentation. The pipeline is used to segment low-resolution 3D-EM datasets allowing quantification of white matter morphology in large fields-of-view.Peer reviewe

    Multi-material 3D printing of bioinspired mechanical structures

    Get PDF

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field
    corecore