541 research outputs found

    Character Composition Model with Convolutional Neural Networks for Dependency Parsing on Morphologically Rich Languages

    Full text link
    We present a transition-based dependency parser that uses a convolutional neural network to compose word representations from characters. The character composition model shows great improvement over the word-lookup model, especially for parsing agglutinative languages. These improvements are even better than using pre-trained word embeddings from extra data. On the SPMRL data sets, our system outperforms the previous best greedy parser (Ballesteros et al., 2015) by a margin of 3% on average.Comment: Accepted in ACL 2017 (Short

    Character-Aware Neural Language Models

    Full text link
    We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-the-art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.Comment: AAAI 201

    External Lexical Information for Multilingual Part-of-Speech Tagging

    Get PDF
    Morphosyntactic lexicons and word vector representations have both proven useful for improving the accuracy of statistical part-of-speech taggers. Here we compare the performances of four systems on datasets covering 16 languages, two of these systems being feature-based (MEMMs and CRFs) and two of them being neural-based (bi-LSTMs). We show that, on average, all four approaches perform similarly and reach state-of-the-art results. Yet better performances are obtained with our feature-based models on lexically richer datasets (e.g. for morphologically rich languages), whereas neural-based results are higher on datasets with less lexical variability (e.g. for English). These conclusions hold in particular for the MEMM models relying on our system MElt, which benefited from newly designed features. This shows that, under certain conditions, feature-based approaches enriched with morphosyntactic lexicons are competitive with respect to neural methods

    Transfer learning for Turkish named entity recognition on noisy text

    Get PDF
    This is an accepted manuscript of an article published by Cambridge University Press in Natural Language Engineering on 28/01/2020, available online: https://doi.org/10.1017/S1351324919000627 The accepted version of the publication may differ from the final published version.© Cambridge University Press 2020. In this article, we investigate using deep neural networks with different word representation techniques for named entity recognition (NER) on Turkish noisy text. We argue that valuable latent features for NER can, in fact, be learned without using any hand-crafted features and/or domain-specific resources such as gazetteers and lexicons. In this regard, we utilize character-level, character n-gram-level, morpheme-level, and orthographic character-level word representations. Since noisy data with NER annotation are scarce for Turkish, we introduce a transfer learning model in order to learn infrequent entity types as an extension to the Bi-LSTM-CRF architecture by incorporating an additional conditional random field (CRF) layer that is trained on a larger (but formal) text and a noisy text simultaneously. This allows us to learn from both formal and informal/noisy text, thus improving the performance of our model further for rarely seen entity types. We experimented on Turkish as a morphologically rich language and English as a relatively morphologically poor language. We obtained an entity-level F1 score of 67.39% on Turkish noisy data and 45.30% on English noisy data, which outperforms the current state-of-art models on noisy text. The English scores are lower compared to Turkish scores because of the intense sparsity in the data introduced by the user writing styles. The results prove that using subword information significantly contributes to learning latent features for morphologically rich languages.Published versio
    corecore