90 research outputs found

    MATHEMATICAL MORPHOLOGY BASED CHARACTERIZATION OF BINARY IMAGE

    Full text link

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Probabilistic approaches to matching and modelling shapes

    Get PDF

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Numerical Simulation and Characterisation of the Packing of Granular Materials

    No full text
    The scientific problems related to granular matter are ubiquitous. It is currently an active area of research for physicists and earth scientists, with a wide range of applications within the industrial community. Simple analogue experiments exhibit behaviour that is neither predicted nor described by any current theory. The work presented here consists of modelling granular media using a two-dimensional combined Finite-Discrete Element Method (FEM-DEM). While computationally expensive, as well as modelling accurately the dynamic interactions between independent and arbitrarily shaped grains, this method allows for a complete description of the stress state within individual grains during their transient motion. After a detailed description of FEM-DEM principles, this computational approach is used to investigate the packing of elliptical particles. The work is aimed at understanding the influence of the particle shape (the ellipse aspect ratio) on the emergent properties of the granular matrix such as the particle coordination number and the packing density. The diff erences in microstructure of the resultant packing are analysed using pair correlation functions, particle orientations and pore size distributions. A comparison between frictional and frictionless systems is carried out. It shows great diff erences not only in the calculated porosity and coordination number, but also in terms of structural arrangement and stress distribution. The results suggest that the particle's shape a ffects the structural order of the particle assemblage, which itself controls the stress distribution between the pseudo-static grains. The study then focuses on describing the stress patterns or \force chains" naturally generated in a frictional system. An algorithm based on the analysis of the contact force network is proposed and applied to various packs in order to identify the force chains. A statistical analysis of the force chains looking at their orientation, length and proportion of the particles that support the loads is then performed. It is observed that force chains propagate less efficiently and more heterogeneously through granular systems made of elliptical particles than through systems of discs and it is proposed that structural diff erences due to the particle shape lead to a signifi cant reduction in the length of the stress path that propagates across connected particles. Finally, the e ffect of compression on the granular packing, the emergent properties and the contact force distribution is examined. Results show that the force network evolves towards a more randomly distributed system (from an exponential to a Gaussian distribution), and it confi rms the observations made from simulations using discs. To conclude, the combined finite-discrete element method applied to the study of granular systems provides an attractive modelling strategy to improve the knowledge of granular matter. This is due to the wide range of static and dynamic problems that can be treated with a rigorous physical basis. The applicability of the method was demonstrated through to a variety of problems that involve di fferent physical processes modelled with the FEM-DEM (internal deformations, fracture, and complex geometry). With the rapid extension of the practical limits of computational models, this work emphasizes the opportunity to move towards a modern generation of computer software to understand the complexity of the phenomena associated with discontinua

    Spherical Harmonics Models and their Application to non-Spherical Shape Particles

    Get PDF
    The dissertation investigates spherical harmonics method for describing a particle shape. The main object of research is the non-spherical shape particles. The purpose of this dissertation is to create spherical harmonics model for a non-pherical particle. The dissertation also focuses on determining the suitability of the lowresolution spherical harmonics for describing various non-spherical particles. The work approaches a few tasks such as testing the suitability of a spherical harmonics model for simple symmetric particles and applying it to complex shape particles. The first task is formulated aiming to test the modelling concept and strategy using simple shapes. The second task is related to the practical applications, when complex shape particles are considered. The dissertation consists of introduction, 4 chapters, general conclusions, references, a list of publications by the author on the topic of the dissertation, a summary in Lithuanian and 5 annexes. The introduction reveals the investigated problem, importance of the thesis and the object of research, describes the purpose and tasks of the thesis, research methodology, scientific novelty, the practical significance of results and defended statements. The introduction ends in presenting the author’s publications on the topic of the dissertation, offering the material of made presentations in conferences and defining the structure of the dissertation. Chapter 1 revises the literature: the particulate systems and their processes, shapes of the particles and methods for describing the shape, shape indicators. At the end of the chapter, conclusions are drawn and the tasks for the dissertation are reconsidered. Chapter 2 presents the modelling approach and strategies for the points of the particle surface, spherical harmonics, the calculation of the expansion coefficients, integral parameters and curvature and also the conclusions. Chapters 3 and 4 analize the modelling results of the simple and complex particles. At the end of the both chapters conclusions are drawn. 5 articles focusing on the topic of the dissertation have been published: two articles – in the Thomson ISI register, one article – in conference material and scientific papers in Thomson ISI Proceedings data base, one article – in the journal quoted by other international data base, one article – in material reviewed during international conference. 8 presentations on the subject of the dissertation have been given in conferences at national and international levels
    corecore