122 research outputs found

    Applications of Biological Cell Models in Robotics

    Full text link
    In this paper I present some of the most representative biological models applied to robotics. In particular, this work represents a survey of some models inspired, or making use of concepts, by gene regulatory networks (GRNs): these networks describe the complex interactions that affect gene expression and, consequently, cell behaviour

    Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots

    Get PDF
    Morphogenesis, the biological developmental process of multicellular organisms, is a robust self-organising mechanism for pattern formation governed by gene regulatory networks (GRNs). Recent findings suggest that GRNs often show the use of frequently recurring patterns termed network motifs. Inspired by these biological studies, this paper proposes a morphogenetic approach to pattern formation for swarm robots to entrap targets based on an evolving hierarchical gene regulatory network (EH-GRN). The proposed EH-GRN consists of two layers: The upper layer is for adaptive pattern generation where the GRN model is evolved by basic network motifs, and the lower layer is responsible for driving robots to the target pattern generated by the upper layer. Obstacle information is introduced as one of environmental inputs along with that of targets in order to generate patterns adaptive to unknown environmental changes. Besides, splitting or merging of multiple patterns resulting from target movement is addressed by the inherent feature of the upper layer and the k-means clustering algorithm. Numerical simulations have been performed for scenarios containing static/moving targets and obstacles to validate the effectiveness and benefit of the proposed approach for complex shape generation in dynamic environments

    A Distributed Epigenetic Shape Formation and Regeneration Algorithm for a Swarm of Robots

    Full text link
    Living cells exhibit both growth and regeneration of body tissues. Epigenetic Tracking (ET), models this growth and regenerative qualities of living cells and has been used to generate complex 2D and 3D shapes. In this paper, we present an ET based algorithm that aids a swarm of identically-programmed robots to form arbitrary shapes and regenerate them when cut. The algorithm works in a distributed manner using only local interactions and computations without any central control and aids the robots to form the shape in a triangular lattice structure. In case of damage or splitting of the shape, it helps each set of the remaining robots to regenerate and position themselves to build scaled down versions of the original shape. The paper presents the shapes formed and regenerated by the algorithm using the Kilombo simulator.Comment: 8 pages, 9 figures, GECCO-18 conferenc

    Morphogenesis in robot swarms

    Get PDF
    Morphogenesis allows millions of cells to self-organize into intricate structures with a wide variety of functional shapes during embryonic development. This process emerges from local interactions of cells under the control of gene circuits that are identical in every cell, robust to intrinsic noise, and adaptable to changing environments. Constructing human technology with these properties presents an important opportunity in swarm robotic applications ranging from construction to exploration. Morphogenesis in nature may use two different approaches: hierarchical, top-down control or spontaneously self-organizing dynamics such as reaction-diffusion Turing patterns. Here, we provide a demonstration of purely self-organizing behaviors to create emergent morphologies in large swarms of real robots. The robots achieve this collective organization without any self-localization and instead rely entirely on local interactions with neighbors. Results show swarms of 300 robots that self-construct organic and adaptable shapes that are robust to damage. This is a step toward the emergence of functional shape formation in robot swarms following principles of self-organized morphogenetic engineering

    Devobot: From Biological Morphogenesis to Morphogenetic Swarm Robotics

    Get PDF
    Complex systems are composed of a large number of relatively simple entities interacting with each other and their environment. From those entities and interactions emerge new and often unpredictable collective structures. Complex systems are widely present in nature, from cells and living organisms to human societies. A major biological process behind this emergence in natural complex systems is morphogenesis, which refers mainly, although not exclusively, to shape development in multicellular organisms. Inspired by morphogenesis, the field of Morphogenetic Engineering (ME) aims to design a system’s global architecture and behaviour in a bottom-up fashion from the self-organisation of a myriad of small components. In particular, Morphogenetic Robotics (MR) strives to apply ME to Swarm Robotics in order to create robot collectives exhibiting morphogenetic properties. While most MR works focus on small and cheap hardware, such as Kilobots, only few or them investigate swarms of mobile and more “intelligent” robot models. In this thesis, we present two original works involving higher-end MR swarms based on the PsiSwarm platform, a two-wheeled saucer-size robot running the Mbed operating system. First, we describe a novel distributed algorithm capable of growing a densely packed “multi-robot organism” out of a group of 40 PsiSwarms, based on ME principles. Then, in another study closer to Modular Robotics (MoR), and taking inspiration from “programmable network growth”, we demonstrate the self-organisation of (virtual) branched structures among a flock of robots. Both works use MORSE, a realistic simulation tool, while a path toward crossing the “reality gap” is shown by preliminary experiments conducted using real hardware

    Towards a Boolean network-based Computational Model for Cell Differentiation and its applications to Robotics

    Get PDF
    Living organisms are the ultimate product of a series of complex processes that take place within—and among—biological cells. Most of these processes, such as cell differentiation, are currently poorly understood. Cell differentiation is the process by which cells progressively specialise. Being a fundamental process within cells, its dysregulations have dramatic implications in biological organisms ranging from developmental issues to cancer formation. The thesis objective is to contribute to the progress in the understanding of cell differentiation and explore the applications of its properties for designing artificial systems. The proposed approach, which relies on Boolean networks based modelling and on the theory of dynamical systems, aims at investigating the general mechanisms underlying cell differentiation. The results obtained contribute to taking a further step towards the formulation of a general theoretical framework—so far missing—for cellular differentiation. We conducted an in-depth analysis of the impact of self-loops in random Boolean networks ensembles. We proposed a new model of differentiation driven by a simplified bio-inspired methylation mechanism in Boolean models of genetic regulatory networks. On the artificial side, by introducing the conceptual metaphor of the “attractor landscape” and related proofs of concept that support its potential, we paved the way for a new research direction in robotics called behavioural differentiation robotics: a branch of robotics dealing with the designing of robots capable of expressing different behaviours in a way similar to that of biological cells that undergo differentiation. The implications of the results achieved may have beneficial effects on medical research. Indeed, the proposed approach can foster new questions, experiments and in turn, models that hopefully in the next future will take us to cure differentiation-related diseases such as cancer. Our work may also contribute to address questions concerning the evolution of complex behaviours and to help design robust and adaptive robots

    Fictional Proto-architecture as an Introduction to Biologic Design: Challenging the Concept of Morphogenesis of Neo-architectural Organism

    Get PDF
    The architecture is based on a dialectical search for new ways of matter representation. We deal with the form of contemporary architecture under two approaches: expression and content. The article examines how mathematical principles based on natural growth can be applied in architectural design to create a dynamic, not static, structure. The dynamic process of the cell and its growth provides the basic structure. The continuity of the domain is exemplified by the impact of the new forms on the society that has already begun to emerge from the obscurity. The paper argues that without a deeper and more receptive connection between geometry and performance from a bio-morphogenetic perspective of complex systems. The experimental design methods are applied both to generate and to evaluate an architecture of the futuristic lines. These methodological frameworks focus on cyclically restated themes in the field of parametrises, which are identified as endemic to architecture: the realization of buildings, of multifunctional volumes and customized per se through a gradual approach of the architectural properties and the exploitation of a "concept construction" integrated as a process, obtained through innovative modelling environments. And so, and the reconstruction of architecture as an organ of nature is demonstrated. The new vanguard of proto architecture describes difficulties and inconsistencies in the relationship between theories and structures, difficulties arising from the very idea of "virtually" itself. It becomes difficult to say that a drawing in cyberspace is an architectural form or just a graph of architectural theory; in the virtual space, there is no difference between the particular structure and the general principle. Therefore, the form is first designed, only after to be constructed. Naturally, it is impossible (theoretically or technically) for design and construction processes to take place simultaneously. Predictably, bio-morphosis leads to multiple forms of expression, defined and transmitted in geometric terms. Doi: 10.28991/esj-2020-01248 Full Text: PD
    • …
    corecore