4,367 research outputs found

    Geometry of wave propagation on active deformable surfaces

    Get PDF
    Fundamental biological and biomimetic processes, from tissue morphogenesis to soft robotics, rely on the propagation of chemical and mechanical surface waves to signal and coordinate active force generation. The complex interplay between surface geometry and contraction wave dynamics remains poorly understood, but will be essential for the future design of chemically-driven soft robots and active materials. Here, we couple prototypical chemical wave and reaction-diffusion models to non-Euclidean shell mechanics to identify and characterize generic features of chemo-mechanical wave propagation on active deformable surfaces. Our theoretical framework is validated against recent data from contractile wave measurements on ascidian and starfish oocytes, producing good quantitative agreement in both cases. The theory is then applied to illustrate how geometry and preexisting discrete symmetries can be utilized to focus active elastic surface waves. We highlight the practical potential of chemo-mechanical coupling by demonstrating spontaneous wave-induced locomotion of elastic shells of various geometries. Altogether, our results show how geometry, elasticity and chemical signaling can be harnessed to construct dynamically adaptable, autonomously moving mechanical surface wave guides.Comment: text changes abstract and intro, new results on self-propelled elastic shells added; 5 pages, 3 figures; videos available on reques

    A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth

    Full text link
    Mollusk shells are an ideal model system for understanding the morpho-elastic basis of morphological evolution of invertebrates' exoskeletons. During the formation of the shell, the mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of the exoskeleton. Most of the existing literature on the morphology of mollusks is descriptive. The mathematical understanding of the underlying coupling between pre-existing shell morphology, de novo surface deposition and morpho-elastic volume growth is at a nascent stage, primarily limited to reduced geometric representations. Here, we propose a general, three-dimensional computational framework coupling pre-existing morphology, incremental surface growth by accretion, and morpho-elastic volume growth. We exercise this framework by applying it to explain the stepwise morphogenesis of seashells during growth: new material surfaces are laid down by accretive growth on the mantle whose form is determined by its morpho-elastic growth. Calcification of the newest surfaces extends the shell as well as creates a new scaffold that constrains the next growth step. We study the effects of surface and volumetric growth rates, and of previously deposited shell geometries on the resulting modes of mantle deformation, and therefore of the developing shell's morphology. Connections are made to a range of complex shells ornamentations.Comment: Main article is 20 pages long with 15 figures. Supplementary material is 4 pages long with 6 figures and 6 attached movies. To be published in PLOS Computational Biolog

    Digital Tectonics as a Morphogenetic Process

    Full text link
    p. 938-948Tectonics is a seminal concept that defines the nature of the relationship between architecture and its structural properties. The changing definition of the symbiotic relationship between structural engineering and architectural design may be considered one of the formative influences on the conceptual evolution of tectonics in different historical periods. Recent developments in the field of morphogenesis, digital media, theories techniques and methods of digital design have contributed a new models of integration between structure, material and form in digital tectonics. The objective of this paper is to propose and define tectonics as a model of morphogenetic process. The paper identifies and presents the manner in which theory and emerging concepts of morphogenesis as well as digital models of design are contributing to this new model. The paper first analyzes the historical evolution of tectonics as a concept and characterizes the emergence of theoretical framework reflected in concepts and terms related to morphogenesis.Oxman, R. (2010). Digital Tectonics as a Morphogenetic Process. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/695

    Turing Patterns and Biological Explanation

    Get PDF
    Turing patterns are a class of minimal mathematical models that have been used to discover and conceptualize certain abstract features of early biological development. This paper examines a range of these minimal models in order to articulate and elaborate a philosophical analysis of their epistemic uses. It is argued that minimal mathematical models aid in structuring the epistemic practices of biology by providing precise descriptions of the quantitative relations between various features of the complex systems, generating novel predictions that can be compared with experimental data, promoting theory exploration, and acting as constitutive parts of empirically adequate explanations of naturally occurring phenomena, such as biological pattern formation. Focusing on the roles that minimal model explanations play in science motivates the adoption of a broader diachronic view of scientific explanation

    Using mathematical models to help understand biological pattern formation

    Get PDF
    One of the characteristics of biological systems is their ability to produce and sustain spatial and spatio-temporal pattern. Elucidating the underlying mechanisms responsible for this phenomenon has been the goal of much experimental and theoretical research. This paper illustrates this area of research by presenting some of the mathematical models that have been proposed to account for pattern formation in biology and considering their implications.To cite this article: P.K. Maini, C. R. Biologies 327 (2004)
    corecore