755 research outputs found

    Proceedings of the Morpho Challenge 2010 Workshop

    Get PDF
    In natural language processing many practical tasks, such as speech recognition, information retrieval and machine translation depend on a large vocabulary and statistical language models. For morphologically rich languages, such as Finnish and Turkish, the construction of a vocabulary and language models that have a sufficient coverage is particularly difficult, because of the huge amount of different word forms. In Morpho Challenge 2010 unsupervised and semi-supervised algorithms are suggested to provide morpheme analyses for words in different languages and evaluated in various practical applications. As a research theme, unsupervised morphological analysis has received wide attention in conferences and scientific journals focused on computational linguistic and its applications. This is the proceedings of the Morpho Challenge 2010 Workshop that contains one introduction article with a description of the tasks, evaluation and results and six articles describing the participating unsupervised and supervised learning algorithms. The Morpho Challenge 2010 Workshop was held at Espoo, Finland in 2-3 September, 2010.reviewe

    Methods and algorithms for unsupervised learning of morphology

    Get PDF
    This is an accepted manuscript of a chapter published by Springer in Computational Linguistics and Intelligent Text Processing. CICLing 2014. Lecture Notes in Computer Science, vol 8403 in 2014 available online: https://doi.org/10.1007/978-3-642-54906-9_15 The accepted version of the publication may differ from the final published version.This paper is a survey of methods and algorithms for unsupervised learning of morphology. We provide a description of the methods and algorithms used for morphological segmentation from a computational linguistics point of view. We survey morphological segmentation methods covering methods based on MDL (minimum description length), MLE (maximum likelihood estimation), MAP (maximum a posteriori), parametric and non-parametric Bayesian approaches. A review of the evaluation schemes for unsupervised morphological segmentation is also provided along with a summary of evaluation results on the Morpho Challenge evaluations.Published versio

    Unsupervised learning of allomorphs in Turkish

    Get PDF
    © 2017 The Author. Published by The Scientific and Technological Research Council of Turkey. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://journals.tubitak.gov.tr/elektrik/issues/elk-17-25-4/elk-25-4-57-1605-216.pdfOne morpheme may have several surface forms that correspond to allomorphs. In English, ed and d are surface forms of the past tense morpheme, and s, es, and ies are surface forms of the plural or present tense morpheme. Turkish has a large number of allomorphs due to its morphophonemic processes. One morpheme can have tens of different surface forms in Turkish. This leads to a sparsity problem in natural language processing tasks in Turkish. Detection of allomorphs has not been studied much because of its difficulty. For example, t¨u and di are Turkish allomorphs (i.e. past tense morpheme), but all of their letters are different. This paper presents an unsupervised model to extract the allomorphs in Turkish. We are able to obtain an F-measure of 73.71% in the detection of allomorphs, and our model outperforms previous unsupervised models on morpheme clustering.Published versio

    A Task-based Evaluation of French Morphological Resources and Tools

    Get PDF
    Morphology is a key component for many Language Technology applications. However, morphological relations, especially those relying on the derivation and compounding processes, are often addressed in a superficial manner. In this article, we focus on assessing the relevance of deep and motivated morphological knowledge in Natural Language Processing applications. We first describe an annotation experiment whose goal is to evaluate the role of morphology for one task, namely Question Answering (QA). We then highlight the kind of linguistic knowledge that is necessary for this particular task and propose a qualitative analysis of morphological phenomena in order to identify the morphological processes that are most relevant. Based on this study, we perform an intrinsic evaluation of existing tools and resources for French morphology, in order to quantify their coverage. Our conclusions provide helpful insights for using and building appropriate morphological resources and tools that could have a significant impact on the application performance

    Spanish named entity recognition in the biomedical domain

    Get PDF
    Named Entity Recognition in the clinical domain and in languages different from English has the difficulty of the absence of complete dictionaries, the informality of texts, the polysemy of terms, the lack of accordance in the boundaries of an entity, the scarcity of corpora and of other resources available. We present a Named Entity Recognition method for poorly resourced languages. The method was tested with Spanish radiology reports and compared with a conditional random fields system.Peer ReviewedPostprint (author's final draft

    Incorporating word embeddings in unsupervised morphological segmentation

    Get PDF
    We investigate the usage of semantic information for morphological segmentation since words that are derived from each other will remain semantically related. We use mathematical models such as maximum likelihood estimate (MLE) and maximum a posteriori estimate (MAP) by incorporating semantic information obtained from dense word vector representations. Our approach does not require any annotated data which make it fully unsupervised and require only a small amount of raw data together with pretrained word embeddings for training purposes. The results show that using dense vector representations helps in morphological segmentation especially for low-resource languages. We present results for Turkish, English, and German. Our semantic MLE model outperforms other unsupervised models for Turkish language. Our proposed models could be also used for any other low-resource language with concatenative morphology.</p
    corecore