7 research outputs found

    A Time and Space Efficient Junction Tree Architecture

    Full text link
    The junction tree algorithm is a way of computing marginals of boolean multivariate probability distributions that factorise over sets of random variables. The junction tree algorithm first constructs a tree called a junction tree who's vertices are sets of random variables. The algorithm then performs a generalised version of belief propagation on the junction tree. The Shafer-Shenoy and Hugin architectures are two ways to perform this belief propagation that tradeoff time and space complexities in different ways: Hugin propagation is at least as fast as Shafer-Shenoy propagation and in the cases that we have large vertices of high degree is significantly faster. However, this speed increase comes at the cost of an increased space complexity. This paper first introduces a simple novel architecture, ARCH-1, which has the best of both worlds: the speed of Hugin propagation and the low space requirements of Shafer-Shenoy propagation. A more complicated novel architecture, ARCH-2, is then introduced which has, up to a factor only linear in the maximum cardinality of any vertex, time and space complexities at least as good as ARCH-1 and in the cases that we have large vertices of high degree is significantly faster than ARCH-1

    Heuristic assignment of CPDs for probabilistic inference in junction trees

    Get PDF
    Many researches have been done for efficient computation of probabilistic queries posed to Bayesian networks (BN). One of the popular architectures for exact inference on BNs is the Junction Tree (JT) based architecture. Among all the different architectures developed, HUGIN is the most efficient JT-based architecture. The Global Propagation (GP) method used in the HUGIN architecture is arguably one of the best methods for probabilistic inference in BNs. Before the propagation, initialization is done to obtain the potential for each cluster in the JT. Then with the GP method, each cluster potential becomes cluster marginal through passing messages with its neighboring clusters. Improvements have been proposed by many researchers to make this message propagation more efficient. Still the GP method can be very slow for dense networks. As BNs are applied to larger, more complex, and realistic applications, developing more efficient inference algorithm has become increasingly important. Towards this goal, in this paper, we present some heuristics for initialization that avoids unnecessary message passing among clusters of the JT and therefore it improves the performance of the architecture by passing lesser messages

    Efficient Probabilistic Inference Algorithms for Cooperative Multiagent Systems

    Get PDF
    Probabilistic reasoning methods, Bayesian networks (BNs) in particular, have emerged as an effective and central tool for reasoning under uncertainty. In a multi-agent environment, agents equipped with local knowledge often need to collaborate and reason about a larger uncertainty domain. Multiply sectioned Bayesian networks (MSBNs) provide a solution for the probabilistic reasoning of cooperative agents in such a setting. In this thesis, we first aim to improve the efficiency of current MSBN exact inference algorithms. We show that by exploiting the calculation schema and the semantic meaning of inter-agent messages, we can significantly reduce an agent\u27s local computational cost as well as the inter-agent communication overhead. Our novel technical contributions include 1) a new message passing architecture based on an MSBN linked junction tree forest (LJF); 2) a suite of algorithms extended from our work in BNs to provide the semantic analysis of inter-agent messages; 3) a fast marginal calibration algorithm, designed for an LJF that guarantees exact results with a minimum local and global cost. We then investigate how to incorporate approximation techniques in the MSBN framework. We present a novel local adaptive importance sampler (LLAIS) designed to apply localized stochastic sampling while maintaining the LJF structure. The LLAIS sampler provides accurate estimations for local posterior beliefs and promotes efficient calculation of inter-agent messages. We also address the problem of online monitoring for cooperative agents. As the MSBN model is restricted to static domains, we introduce an MA-DBN model based on a combination of the MSBN and dynamic Bayesian network (DBN) models. We show that effective multi-agent online monitoring with bounded error is possible in an MA-DBN through a new secondary inference structure and a factorized representation of forward messages

    Uncertain Knowledge Reasoning Based on the Fuzzy Multi-Entity Bayesian Network

    Get PDF
    With the rapid development of the semantic web and the ever-growing size of uncertain data, representing and reasoning uncertain information has become a great challenge for the semantic web application developers. In this paper, we present a novel reasoning framework based on the representation of fuzzy PR-OWL. Firstly, the paper gives an overview of the previous research work on uncertainty knowledge representation and reasoning, incorporates Ontology into the fuzzy Multi Entity Bayesian Networks theory, and introduces fuzzy PR-OWL, an Ontology language based on OWL2. Fuzzy PR-OWL describes fuzzy semantics and uncertain relations and gives grammatical definition and semantic interpretation. Secondly, the paper explains the integration of the Fuzzy Probability theory and the Belief Propagation algorithm. The influencing factors of fuzzy rules are added to the belief that is propagated between the nodes to create a reasoning framework based on fuzzy PR-OWL. After that, the reasoning process, including the SSFBN structure algorithm, data fuzzification, reasoning of fuzzy rules, and fuzzy belief propagation, is scheduled. Finally, compared with the classical algorithm from the aspect of accuracy and time complexity, our uncertain data representation and reasoning method has higher accuracy without significantly increasing time complexity, which proves the feasibility and validity of our solution to represent and reason uncertain information

    Байєсівські мережі в системах підтримки прийняття рішень

    Get PDF
    Пропонується докладне висвітлення сучасних підходів до моделювання процесів довільної природи за допомогою байєсівських мереж (БМ) і дерев рішень. Байєсівська мережа – ймовірнісна модель, преставлена у формі спрямованого ациклічного графа, вершинами якого є змінні досліджуваного процесу. БМ – потужний сучасний інструмент моделювання процесів та об’єктів, які функціонують в умовах наявності невизначеностей довільної природи. Їх успішно використовують для розв’язання задач прогнозування, передбачення, медичної і технічної діагностики, прийняття управлінських рішень, автоматичного керування і т. ін. Розглянуто теорію побудови байєсівських мереж, яка включає задачі навчання структури мережі та формування ймовірнісного висновку на її основі. Наведено практичні методики побудови (оцінювання) структури мережі на основі статистичних даних і експертних оцінок. Докладно описано відповідні алгоритмічні процедури. Окремо розглянуто варіанти використання дискретних і неперервних змінних, а також можливості створення гібридної мережі. Наведено кілька методів обчислення ймовірнісного висновку за допомогою побудованої мережі, у тому числі методи формування точного і наближеного висновків. Докладно розглянуто приклади розв’язання практичних задач за допомогою мереж Байєса. Зокрема, задачі моделювання, прогнозування і розпізнавання образів. Наведено перелік відомих програмних продуктів та їх виробників для побудови та застосування байєсівських мереж, частина з яких є повністю доступними для використання у мережі Інтернет. Деякі системи можна доповнювати новими програмними модулями. Книга рекомендується як навчальний посібник для студентів, аспірантів та викладачів, а також для інженерів, які спеціалізуються у галузі розв’язання задач ймовірнісного математичного моделювання, прогнозування, передбачення і розпізнавання образів процесів довільної природи, інформація стосовно який представлена статистичними даними та експертними оцінками

    Morphing the Hugin and Shenoy–Shafer Architectures

    No full text

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore