156 research outputs found

    Morphing Planar Graph Drawings with Unidirectional Moves

    Full text link
    Alamdari et al. showed that given two straight-line planar drawings of a graph, there is a morph between them that preserves planarity and consists of a polynomial number of steps where each step is a \emph{linear morph} that moves each vertex at constant speed along a straight line. An important step in their proof consists of converting a \emph{pseudo-morph} (in which contractions are allowed) to a true morph. Here we introduce the notion of \emph{unidirectional morphing} step, where the vertices move along lines that all have the same direction. Our main result is to show that any planarity preserving pseudo-morph consisting of unidirectional steps and contraction of low degree vertices can be turned into a true morph without increasing the number of steps. Using this, we strengthen Alamdari et al.'s result to use only unidirectional morphs, and in the process we simplify the proof.Comment: 13 pages, 9 figure

    Planar L-Drawings of Directed Graphs

    Full text link
    We study planar drawings of directed graphs in the L-drawing standard. We provide necessary conditions for the existence of these drawings and show that testing for the existence of a planar L-drawing is an NP-complete problem. Motivated by this result, we focus on upward-planar L-drawings. We show that directed st-graphs admitting an upward- (resp. upward-rightward-) planar L-drawing are exactly those admitting a bitonic (resp. monotonically increasing) st-ordering. We give a linear-time algorithm that computes a bitonic (resp. monotonically increasing) st-ordering of a planar st-graph or reports that there exists none.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Morphing planar triangulations

    Get PDF
    A morph between two drawings of the same graph can be thought of as a continuous deformation between the two given drawings. A morph is linear if every vertex moves along a straight line segment from its initial position to its final position. In this thesis we study algorithms for morphing, in which the morphs are given by sequences of linear morphing steps. In 1944, Cairns proved that it is possible to morph between any two planar drawings of a planar triangulation while preserving planarity during the morph. However this morph may require exponentially many steps. It was not until 2013 that Alamdari et al. proved that the morphing problem for planar triangulations can be solved using polynomially many steps. In 1990 it was shown by Schnyder that using special drawings that we call Schnyder drawings it is possible to draw a planar graph on a O(n)×O(n) grid, and moreover such drawings can be found in O(n) time (here n denotes the number of vertices of the graph). It still remains unknown whether there is an efficient algorithm for morphing in which all drawings are on a polynomially sized grid. In this thesis we give two different new solutions to the morphing problem for planar triangulations. Our first solution gives a strengthening of the result of Alamdari et al. where each step is a unidirectional morph. This also leads to a simpler proof of their result. Our second morphing algorithm finds a planar morph consisting of O(n²) steps between any two Schnyder drawings while remaining in an O(n)×O(n) grid. However, there are drawings of planar triangulations which are not Schnyder drawings, and for these drawings we show that a unidirectional morph consisting of O(n) steps that ends at a Schnyder drawing can be found. We conclude this work by showing that the basic steps from our morphs can be implemented using a Schnyder wood and weight shifts on the set of interior faces

    Critical Material Parameters for Modeling Devices Made from an Epoxy-Based Shape Memory Polymer

    Get PDF
    Differential scanning calorimetry (DSC), simple tension, and planar tension experiments were used to investigate the behavior of an epoxy-based shape memory polymer (SMP) system. DSC results found the mixture had consistent glass transition at 70° C, which agreed with prior research with this formulation. Simple tension experiments were consistent with nonlinear elastic behavior and FEA analysis agreed with the experiments. However, the nonlinear elastic model did not predict the performance found in planar tension. Planar tension results were unexpected. The stress/strain response was sigmoidal with a significant plateau in stress followed by rising stress to failure. The standard 10:1 gage width/gage length ratio seemed to over constrain the material. The strain to failure was small, and insufficient for extracting hyperelastic parameters. Using narrower gage width specimens, or perhaps a new specimen design, would benefit modeling and analysis for this material

    Network Visualization: Algorithms, Applications, and Complexity

    Get PDF
    • …
    corecore