112 research outputs found

    Design and Evaluation of Product Aesthetics: A Human-Machine Hybrid Approach

    Full text link
    Aesthetics are critically important to market acceptance in many product categories. In the automotive industry in particular, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing new product aesthetics. A single automotive "theme clinic" costs between \$100,000 and \$1,000,000, and hundreds are conducted annually. We use machine learning to augment human judgment when designing and testing new product aesthetics. The model combines a probabilistic variational autoencoder (VAE) and adversarial components from generative adversarial networks (GAN), along with modeling assumptions that address managerial requirements for firm adoption. We train our model with data from an automotive partner-7,000 images evaluated by targeted consumers and 180,000 high-quality unrated images. Our model predicts well the appeal of new aesthetic designs-38% improvement relative to a baseline and substantial improvement over both conventional machine learning models and pretrained deep learning models. New automotive designs are generated in a controllable manner for the design team to consider, which we also empirically verify are appealing to consumers. These results, combining human and machine inputs for practical managerial usage, suggest that machine learning offers significant opportunity to augment aesthetic design

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Bias in Deep Learning and Applications to Face Analysis

    Get PDF
    Deep learning has fostered the progress in the field of face analysis, resulting in the integration of these models in multiple aspects of society. Even though the majority of research has focused on optimizing standard evaluation metrics, recent work has exposed the bias of such algorithms as well as the dangers of their unaccountable utilization.n this thesis, we explore the bias of deep learning models in the discriminative and the generative setting. We begin by investigating the bias of face analysis models with regards to different demographics. To this end, we collect KANFace, a large-scale video and image dataset of faces captured ``in-the-wild’'. The rich set of annotations allows us to expose the demographic bias of deep learning models, which we mitigate by utilizing adversarial learning to debias the deep representations. Furthermore, we explore neural augmentation as a strategy towards training fair classifiers. We propose a style-based multi-attribute transfer framework that is able to synthesize photo-realistic faces of the underrepresented demographics. This is achieved by introducing a multi-attribute extension to Adaptive Instance Normalisation that captures the multiplicative interactions between the representations of different attributes. Focusing on bias in gender recognition, we showcase the efficacy of the framework in training classifiers that are more fair compared to generative and fairness-aware methods.In the second part, we focus on bias in deep generative models. In particular, we start by studying the generalization of generative models on images of unseen attribute combinations. To this end, we extend the conditional Variational Autoencoder by introducing a multilinear conditioning framework. The proposed method is able to synthesize unseen attribute combinations by modeling the multiplicative interactions between the attributes. Lastly, in order to control protected attributes, we investigate controlled image generation without training on a labelled dataset. We leverage pre-trained Generative Adversarial Networks that are trained in an unsupervised fashion and exploit the clustering that occurs in the representation space of intermediate layers of the generator. We show that these clusters capture semantic attribute information and condition image synthesis on the cluster assignment using Implicit Maximum Likelihood Estimation.Open Acces

    Conditional Image Synthesis by Generative Adversarial Modeling

    Get PDF
    Recent years, image synthesis has attracted more interests. This work explores the recovery of details (low-level information) from high-level features. The generative adversarial nets (GAN) has led to the explosion of image synthesis. Moving away from those application-oriented alternatives, this work investigates its intrinsic drawbacks and derives corresponding improvements in a theoretical manner.Based on GAN, this work further investigates the conditional image synthesis by incorporating an autoencoder (AE) to GAN. The GAN+AE structure has been demonstrated to be an effective framework for image manipulation. This work emphasizes the effectiveness of GAN+AE structure by proposing the conditional adversarial autoencoder (CAAE) for human facial age progression and regression. Instead of editing on the image level, i.e., explicitly changing the shape of face, adding wrinkle, etc., this work edits the high-level features which implicitly guide the recovery of images towards expected appearance.While GAN+AE being prevalent in image manipulation, its drawbacks lack exploration. For example, GAN+AE requires a weight to balance the effects of GAN and AE. An inappropriate weight would generate unstable results. This work provides an insight to such instability, which is due to the interaction between GAN and AE. Therefore, this work proposes the decoupled learning (GAN//AE) to avoid the interaction between them and achieve a robust and effective framework for image synthesis. Most existing works used GAN+AE structure could be easily adapted to the proposed GAN//AE structure to boost their robustness. Experimental results demonstrate the correctness and effectiveness of the provided derivation and proposed methods, respectively.In addition, this work extends the conditional image synthesis to the traditional area of image super-resolution, which recovers the high-resolution image according the low-resolution counterpart. Diverting from such traditional routine, this work explores a new research direction | reference-conditioned super-resolution, in which a reference image containing desired high-resolution texture details is used besides the low-resolution image. We focus on transferring the high-resolution texture from reference images to the super-resolution process without the constraint of content similarity between reference and target images, which is a key difference from previous example-based methods

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area
    • …
    corecore