469 research outputs found

    Pincherle's theorem in Reverse Mathematics and computability theory

    Full text link
    We study the logical and computational properties of basic theorems of uncountable mathematics, in particular Pincherle's theorem, published in 1882. This theorem states that a locally bounded function is bounded on certain domains, i.e. one of the first 'local-to-global' principles. It is well-known that such principles in analysis are intimately connected to (open-cover) compactness, but we nonetheless exhibit fundamental differences between compactness and Pincherle's theorem. For instance, the main question of Reverse Mathematics, namely which set existence axioms are necessary to prove Pincherle's theorem, does not have an unique or unambiguous answer, in contrast to compactness. We establish similar differences for the computational properties of compactness and Pincherle's theorem. We establish the same differences for other local-to-global principles, even going back to Weierstrass. We also greatly sharpen the known computational power of compactness, for the most shared with Pincherle's theorem however. Finally, countable choice plays an important role in the previous, we therefore study this axiom together with the intimately related Lindel\"of lemma.Comment: 43 pages, one appendix, to appear in Annals of Pure and Applied Logi

    On the mathematical and foundational significance of the uncountable

    Full text link
    We study the logical and computational properties of basic theorems of uncountable mathematics, including the Cousin and Lindel\"of lemma published in 1895 and 1903. Historically, these lemmas were among the first formulations of open-cover compactness and the Lindel\"of property, respectively. These notions are of great conceptual importance: the former is commonly viewed as a way of treating uncountable sets like e.g. [0,1][0,1] as 'almost finite', while the latter allows one to treat uncountable sets like e.g. R\mathbb{R} as 'almost countable'. This reduction of the uncountable to the finite/countable turns out to have a considerable logical and computational cost: we show that the aforementioned lemmas, and many related theorems, are extremely hard to prove, while the associated sub-covers are extremely hard to compute. Indeed, in terms of the standard scale (based on comprehension axioms), a proof of these lemmas requires at least the full extent of second-order arithmetic, a system originating from Hilbert-Bernays' Grundlagen der Mathematik. This observation has far-reaching implications for the Grundlagen's spiritual successor, the program of Reverse Mathematics, and the associated G\"odel hierachy. We also show that the Cousin lemma is essential for the development of the gauge integral, a generalisation of the Lebesgue and improper Riemann integrals that also uniquely provides a direct formalisation of Feynman's path integral.Comment: 35 pages with one figure. The content of this version extends the published version in that Sections 3.3.4 and 3.4 below are new. Small corrections/additions have also been made to reflect new development
    • …
    corecore