2,513 research outputs found

    Origami constraints on the initial-conditions arrangement of dark-matter caustics and streams

    Full text link
    In a cold-dark-matter universe, cosmological structure formation proceeds in rough analogy to origami folding. Dark matter occupies a three-dimensional 'sheet' of free- fall observers, non-intersecting in six-dimensional velocity-position phase space. At early times, the sheet was flat like an origami sheet, i.e. velocities were essentially zero, but as time passes, the sheet folds up to form cosmic structure. The present paper further illustrates this analogy, and clarifies a Lagrangian definition of caustics and streams: caustics are two-dimensional surfaces in this initial sheet along which it folds, tessellating Lagrangian space into a set of three-dimensional regions, i.e. streams. The main scientific result of the paper is that streams may be colored by only two colors, with no two neighbouring streams (i.e. streams on either side of a caustic surface) colored the same. The two colors correspond to positive and negative parities of local Lagrangian volumes. This is a severe restriction on the connectivity and therefore arrangement of streams in Lagrangian space, since arbitrarily many colors can be necessary to color a general arrangement of three-dimensional regions. This stream two-colorability has consequences from graph theory, which we explain. Then, using N-body simulations, we test how these caustics correspond in Lagrangian space to the boundaries of haloes, filaments and walls. We also test how well outer caustics correspond to a Zel'dovich-approximation prediction.Comment: Clarifications and slight changes to match version accepted to MNRAS. 9 pages, 5 figure

    Compliant morphing structures from twisted bulk metallic glass ribbons

    Get PDF
    In this work, we investigate the use of pre-twisted metallic ribbons as building blocks for shape-changing structures. We manufacture these elements by twisting initially flat ribbons about their (lengthwise) centroidal axis into a helicoidal geometry, then thermoforming them to make this configuration a stress-free reference state. The helicoidal shape allows the ribbon to have preferred bending directions that vary throughout its length. These bending directions serve as compliant joints and enable several deployed and stowed configurations that are unachievable without pre-twist, provided that compaction does not induce material failure. We fabricate these ribbons using a bulk metallic glass (BMG), for its exceptional elasticity and thermoforming attributes. Combining numerical simulations, an analytical model based on shell theory and torsional experiments, we analyze the finite-twisting mechanics of various ribbon geometries. We find that, in ribbons with undulated edges, the twisting deformations can be better localized onto desired regions prior to thermoforming. Finally, we join together multiple ribbons to create deployable systems. Our work proposes a framework for creating fully metallic, yet compliant structures that may find application as elements for space structures and compliant robots

    Autonomous Deployment of a Solar Panel Using an Elastic Origami and Distributed Shape Memory Polymer Actuators

    Get PDF
    Deployable mechanical systems such as space solar panels rely on the intricate stowage of passive modules, and sophisticated deployment using a network of motorized actuators. As a result, a significant portion of the stowed mass and volume are occupied by these support systems. An autonomous solar panel array deployed using the inherent material behavior remains elusive. In this work, we develop an autonomous self-deploying solar panel array that is programmed to activate in response to changes in the surrounding temperature. We study an elastic "flasher" origami sheet embedded in a circle of scissor mechanisms, both printed with shape memory polymers. The scissor mechanisms are optimized to provide the maximum expansion ratio while delivering the necessary force for deployment. The origami sheet is also optimized to carry the maximum number of solar panels given space constraints. We show how the folding of the "flasher" origami exhibits a bifurcation behavior resulting in either a cone or disk shape both numerically and in experiments. A folding strategy is devised to avoid the undesired cone shape. The resulting design is entirely 3D printed, achieves an expansion ratio of 1000% in under 40 seconds, and shows excellent agreement with simulation prediction both in the stowed and deployed configurations.Comment: 12 pages, 12 figure

    Topological mechanics of origami and kirigami

    Get PDF
    Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between spring networks and quantum topological states to design origami with localized folding motions at boundaries and study them both experimentally and theoretically. These folding motions exist due to an underlying topological invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to generalize these topological design principles to two dimensions. A striking consequence is that a domain wall between two topologically distinct, mechanically rigid structures is deformable even when constraints locally match the degrees of freedom.Comment: 5 pages, 3 figures + ~5 pages S

    Patterning nonisometric origami in nematic elastomer sheets

    Get PDF
    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies

    Origami Multistabilty: From Single Vertices to Metasheets

    Get PDF
    We explore the surprisingly rich energy landscape of origami-like folding planar structures. We show that the configuration space of rigid-paneled degree-4 vertices, the simplest building blocks of such systems, consists of at least two distinct branches meeting at the flat state. This suggests that generic vertices are at least bistable, but we find that the nonlinear nature of these branches allows for vertices with as many as five distinct stable states. In vertices with collinear folds and/or symmetry, more branches emerge leading to up to six stable states. Finally, we introduce a procedure to tile arbitrary 4-vertices while preserving their stable states, thus allowing the design and creation of multistable origami metasheets.Comment: For supplemental movies please visit http://www.lorentz.leidenuniv.nl/~chen/multisheet
    • …
    corecore