182,670 research outputs found

    Effective Theory for Trapped Few-Fermion Systems

    Full text link
    We apply the general principles of effective field theories to the construction of effective interactions suitable for few- and many-body calculations in a no-core shell model framework. We calculate the spectrum of systems with three and four two-component fermions in a harmonic trap. In the unitary limit, we find that three-particle results are within 10% of known semi-analytical values even in small model spaces. The method is very general, and can be readily extended to other regimes, more particles, different species (e.g., protons and neutrons in nuclear physics), or more-component fermions (as well as bosons). As an illustration, we present calculations of the lowest-energy three-fermion states away from the unitary limit and find a possible inversion of parity in the ground state in the limit of trap size large compared to the scattering length. Furthermore, we investigate the lowest positive-parity states for four fermions, although we are limited by the dimensions we can currently handle in this case.Comment: 8 pages, 5 figure

    First-principles quantum simulations of dissociation of molecular condensates: Atom correlations in momentum space

    Get PDF
    We investigate the quantum many-body dynamics of dissociation of a Bose-Einstein condensate of molecular dimers into pairs of constituent bosonic atoms and analyze the resulting atom-atom correlations. The quantum fields of both the molecules and atoms are simulated from first principles in three dimensions using the positive-P representation method. This allows us to provide an exact treatment of the molecular field depletion and s-wave scattering interactions between the particles, as well as to extend the analysis to nonuniform systems. In the simplest uniform case, we find that the major source of atom-atom decorrelation is atom-atom recombination which produces molecules outside the initially occupied condensate mode. The unwanted molecules are formed from dissociated atom pairs with non-opposite momenta. The net effect of this process -- which becomes increasingly significant for dissociation durations corresponding to more than about 40% conversion -- is to reduce the atom-atom correlations. In addition, for nonuniform systems we find that mode-mixing due to inhomogeneity can result in further degradation of the correlation signal. We characterize the correlation strength via the degree of squeezing of particle number-difference fluctuations in a certain momentum-space volume and show that the correlation strength can be increased if the signals are binned into larger counting volumes.Comment: Final published version, with updated references and minor modification

    The potential of effective field theory in NN scattering

    Get PDF
    We study an effective field theory of interacting nucleons at distances much greater than the pion's Compton wavelength. In this regime the NN potential is conjectured to be the sum of a delta function and its derivatives. The question we address is whether this sum can be consistently truncated at a given order in the derivative expansion, and systematically improved by going to higher orders. Regularizing the Lippmann-Schwinger equation using a cutoff we find that the cutoff can be taken to infinity only if the effective range is negative. A positive effective range---which occurs in nature---requires that the cutoff be kept finite and below the scale of the physics which has been integrated out, i.e. O(m_\pi). Comparison of cutoff schemes and dimensional regularization reveals that the physical scattering amplitude is sensitive to the choice of regulator. Moreover, we show that the presence of some regulator scale, a feature absent in dimensional regularization, is essential if the effective field theory of NN scattering is to be useful. We also show that one can define a procedure where finite cutoff dependence in the scattering amplitude is removed order by order in the effective potential. However, the characteristic momentum in the problem is given by the cutoff, and not by the external momentum. It follows that in the presence of a finite cutoff there is no small parameter in the effective potential, and consequently no systematic truncation of the derivative expansion can be made. We conclude that there is no effective field theory of NN scattering with nucleons alone.Comment: 25 pages LaTeX, 3 figures (uses epsf

    Universal Properties of Cuprate Superconductors: T_c Phase Diagram, Room-Temperature Thermopower, Neutron Spin Resonance, and STM Incommensurability Explained in Terms of Chiral Plaquette Pairing

    Get PDF
    We report that four properties of cuprates and their evolution with doping are consequences of simply counting four-site plaquettes arising from doping, (1) the universal T_c phase diagram (superconductivity between ~0.05 and ~0.27 doping per CuO_2 plane and optimal T_c at ~0.16), (2) the universal doping dependence of the room-temperature thermopower, (3) the superconducting neutron spin resonance peak (the “41 meV peak”), and (4) the dispersionless scanning tunneling conductance incommensurability. Properties (1), (3), and (4) are explained with no adjustable parameters, and (2) is explained with exactly one. The successful quantitative interpretation of four very distinct aspects of cuprate phenomenology by a simple counting rule provides strong evidence for four-site plaquette percolation in these materials. This suggests that inhomogeneity, percolation, and plaquettes play an essential role in cuprates. This geometric analysis may provide a useful guide to search for new compositions and structures with improved superconducting properties

    Neural Mechanisms for Information Compression by Multiple Alignment, Unification and Search

    Get PDF
    This article describes how an abstract framework for perception and cognition may be realised in terms of neural mechanisms and neural processing. This framework — called information compression by multiple alignment, unification and search (ICMAUS) — has been developed in previous research as a generalized model of any system for processing information, either natural or artificial. It has a range of applications including the analysis and production of natural language, unsupervised inductive learning, recognition of objects and patterns, probabilistic reasoning, and others. The proposals in this article may be seen as an extension and development of Hebb’s (1949) concept of a ‘cell assembly’. The article describes how the concept of ‘pattern’ in the ICMAUS framework may be mapped onto a version of the cell assembly concept and the way in which neural mechanisms may achieve the effect of ‘multiple alignment’ in the ICMAUS framework. By contrast with the Hebbian concept of a cell assembly, it is proposed here that any one neuron can belong in one assembly and only one assembly. A key feature of present proposals, which is not part of the Hebbian concept, is that any cell assembly may contain ‘references’ or ‘codes’ that serve to identify one or more other cell assemblies. This mechanism allows information to be stored in a compressed form, it provides a robust mechanism by which assemblies may be connected to form hierarchies and other kinds of structure, it means that assemblies can express abstract concepts, and it provides solutions to some of the other problems associated with cell assemblies. Drawing on insights derived from the ICMAUS framework, the article also describes how learning may be achieved with neural mechanisms. This concept of learning is significantly different from the Hebbian concept and appears to provide a better account of what we know about human learning
    • 

    corecore