75 research outputs found

    Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security

    Get PDF
    Recently, a variant of proxy re-encryption, named conditional proxy re-encryption (C-PRE), has been introduced. Compared with traditional proxy re-encryption, C-PRE enables the delegator to implement fine-grained delegation of decryption rights, and thus is more useful in many applications. In this paper, based on a careful observation on the existing definitions and security notions for C-PRE, we reformalize more rigorous definition and security notions for C-PRE. We further propose a more efficient C-PRE scheme, and prove its chosenciphertext security under the decisional bilinear Diffie-Hellman (DBDH) assumption in the random oracle model. In addition, we point out that a recent C-PRE scheme fails to achieve the chosen-ciphertext security

    PRE+: dual of proxy re-encryption for secure cloud data sharing service

    Get PDF
    With the rapid development of very large, diverse, complex, and distributed datasets generated from internet transactions, emails, videos, business information systems, manufacturing industry, sensors and internet of things etc., cloud and big data computation have emerged as a cornerstone of modern applications. Indeed, on the one hand, cloud and big data applications are becoming a main driver for economic growth. On the other hand, cloud and big data techniques may threaten people and enterprises’ privacy and security due to ever increasing exposure of their data to massive access. In this paper, aiming at providing secure cloud data sharing services in cloud storage, we propose a scalable and controllable cloud data sharing framework for cloud users (called: Scanf). To this end, we introduce a new cryptographic primitive, namely, PRE+, which can be seen as the dual of traditional proxy re-encryption (PRE) primitive. All the traditional PRE schemes until now require the delegator (or the delegator and the delegatee cooperatively) to generate the re-encryption keys. We observe that this is not the only way to generate the re-encryption keys, the encrypter also has the ability to generate re-encryption keys. Based on this observation, we construct a new PRE+ scheme, which is almost the same as the traditional PRE scheme except the re-encryption keys generated by the encrypter. Compared with PRE, our PRE+ scheme can easily achieve the non-transferable property and message-level based fine-grained delegation. Thus our Scanf framework based on PRE+ can also achieve these two properties, which is very important for users of cloud storage sharing service. We also roughly evaluate our PRE+ scheme’s performance and the results show that our scheme is efficient and practica for cloud data storage applications.Peer ReviewedPostprint (author's final draft

    Proxy Re-encryption based Fair Trade Protocol for Digital Goods Transactions via Smart Contracts

    Full text link
    With the massive amount of digital data generated everyday, transactions of digital goods become a trend. One of the essential requirements for such transactions is fairness, which is defined as that both of the seller and the buyer get what they want, or neither. Current fair trade protocols generally involve a trusted third-party (TTP), which achieves fairness by heavily relying on the TTP's behaviors and the two parties' trust in the TTP. With the emergence of Blockchain, its decentralization and transparency make it a very good candidate to replace the TTP. In this work, we attempt to design a secure and fair protocol for digital goods transactions through smart contracts on Blockchain. To ensure security of the digital goods, we propose an advanced passive proxy re-encryption (PRE) scheme, which enables smart contracts to transfer the decryption right to a buyer after receiving his/her payment. Furthermore, based on smart contracts and the proposed passive PRE scheme, a fair trade protocol for digital goods transactions is proposed, whose fairness is guaranteed by the arbitration protocol. The proposed protocol supports Ciphertext publicity and repeatable sale, while involving less number of interactions. Comprehensive experiment results validate the feasibility and effectiveness of the proposed protocol

    Offline privacy preserving proxy re-encryption in mobile cloud computing

    Get PDF
    This paper addresses the always online behavior of the data owner in proxy re- encryption schemes for re-encryption keys issuing. We extend and adapt multi-authority ciphertext policy attribute based encryption techniques to type-based proxy re-encryption to build our solution. As a result, user authentication and user authorization are moved to the cloud server which does not require further interaction with the data owner, data owner and data users identities are hidden from the cloud server, and re-encryption keys are only issued to legitimate users. An in depth analysis shows that our scheme is secure, flexible and efficient for mobile cloud computing

    A Provably Secure Conditional Proxy Re-Encryption Scheme without Pairing

    Get PDF
    Blaze, Bleumer and Strauss introduced the notion of proxy re-encryption (PRE), which enables a semi-trusted proxy to transform ciphertexts under Alice\u27s public key into ciphertexts under Bob\u27s public key. The important property to note here is, the proxy should not learn anything about the plaintext encrypted. In 2009, Weng et al. introduced the concept of conditional proxy re-encryption (CPRE), which permits the proxy to re-encrypt only ciphertexts satisfying a condition specified by Alice into a ciphertext for Bob. CPRE enables fine-grained delegation of decryption rights useful in many practical scenarios, such as blockchain-enabled distributed cloud storage and encrypted email forwarding. Several CPRE schemes exist in the literature based on costly bilinear pairing operation in the random oracle model. We propose the first construction of an efficient CPRE scheme without pairing, satisfying chosen ciphertext security under the computational Diffie Hellman (CDH) assumption and its variant in the random oracle model

    Efficient unidirectional proxy re-encryption

    Get PDF
    Office of Research, Singapore Management Universit

    Efficient Unidirectional Proxy Re-Encryption

    Get PDF
    Proxy re-encryption (PRE) allows a semi-trusted proxy to convert a ciphertext originally intended for Alice into one encrypting the same plaintext for Bob. The proxy only needs a re-encryption key given by Alice, and cannot learn anything about the plaintext encrypted. This adds flexibility in various applications, such as confidential email, digital right management and distributed storage. In this paper, we study unidirectional PRE, which the re-encryption key only enables delegation in one direction but not the opposite. In PKC 2009, Shao and Cao proposed a unidirectional PRE assuming the random oracle. However, we show that it is vulnerable to chosen-ciphertext attack (CCA). We then propose an efficient unidirectional PRE scheme (without resorting to pairings). We gain high efficiency and CCA-security using the ``token-controlled encryption\u27\u27 technique, under the computational Diffie-Hellman assumption, in the random oracle model and a relaxed but reasonable definition
    • …
    corecore