72 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Testing, Learning, Sampling, Sketching

    Get PDF
    We study several problems about sublinear algorithms, presented in two parts. Part I: Property testing and learning. There are two main goals of research in property testing and learning theory. The first is to understand the relationship between testing and learning, and the second is to develop efficient testing and learning algorithms. We present results towards both goals. - An oft-repeated motivation for property testing algorithms is to help with model selection in learning: to efficiently check whether the chosen hypothesis class (i.e. learning model) will successfully learn the target function. We present in this thesis a proof that, for many of the most useful and natural hypothesis classes (including halfspaces, polynomial threshold functions, intersections of halfspaces, etc.), the sample complexity of testing in the distribution-free model is nearly equal to that of learning. This shows that testing does not give a significant advantage in model selection in this setting. - We present a simple and general technique for transforming testing and learning algorithms designed for the uniform distribution over {0, 1}^d or [n]^d into algorithms that work for arbitrary product distributions over R d . This leads to an improvement and simplification of state-of-the-art results for testing monotonicity, learning intersections of halfspaces, learning polynomial threshold functions, and others. Part II. Adjacency and distance sketching for graphs. We initiate the thorough study of adjacency and distance sketching for classes of graphs. Two open problems in sublinear algorithms are: 1) to understand the power of randomization in communication; and 2) to characterize the sketchable distance metrics. We observe that constant-cost randomized communication is equivalent to adjacency sketching in a hereditary graph class, which in turn implies the existence of an efficient adjacency labeling scheme, the subject of a major open problem in structural graph theory. Therefore characterizing the adjacency sketchable graph classes (i.e. the constant-cost communication problems) is the probabilistic equivalent of this open problem, and an essential step towards understanding the power of randomization in communication. This thesis gives the first results towards a combined theory of these problems and uses this connection to obtain optimal adjacency labels for subgraphs of Cartesian products, resolving some questions from the literature. More generally, we begin to develop a theory of graph sketching for problems that generalize adjacency, including different notions of distance sketching. This connects the well-studied areas of distance sketching in sublinear algorithms, and distance labeling in structural graph theory

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Elementary approaches to microbial growth rate maximisation

    Get PDF
    This thesis, called Elementary approaches to microbial growth rate maximisation, reports on a theoretical search for principles underlying single cell growth, in particular for microbial species that are selected for fast growth rates. First, the optimally growing cell is characterised in terms of its elementary modes. We prove an extremum principle: a cell that maximises a metabolic rate uses few Elementary Flux Modes (EFMs, the minimal pathways that support steady-state metabolism). The number of active EFMs is bounded by the number of growth-limiting constraints. Later, this extremum principle is extended in a theory that explicitly accounts for self-fabrication. For this, we had to define the elementary modes that underlie balanced self-fabrication: minimal self-supporting sets of expressed enzymes that we call Elementary Growth Modes (EGMs). It turns out that many of the results for EFMs can be extended to their more general self-fabrication analogue. Where the above extremum principles tell us that few elementary modes are used by a rate-maximising cell, it does not tell us how the cell can find them. Therefore, we also search for an elementary adaptation method. It turns out that stochastic phenotype switching with growth rate dependent switching rates provides an adaptation mechanism that is often competitive with more conventional regulatory-circuitry based mechanisms. The derived theory is applied in two ways. First, the extremum principles are used to review the mathematical fundaments of all optimisation-based explanations of overflow metabolism. Second, a computational tool is presented that enumerates Elementary Conversion Modes. These elementary modes can be computed for larger networks than EFMs and EGMs, and still provide an overview of the metabolic capabilities of an organism
    • …
    corecore