1,782 research outputs found

    Dense Packings of Congruent Circles in Rectangles with a Variable Aspect Ratio

    Full text link
    We use computational experiments to find the rectangles of minimum area into which a given number n of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. Most of the packings found have the usual regular square or hexagonal pattern. However, for 1495 values of n in the tested range n =< 5000, specifically, for n = 49, 61, 79, 97, 107,... 4999, we prove that the optimum cannot possibly be achieved by such regular arrangements. The evidence suggests that the limiting height-to-width ratio of rectangles containing an optimal hexagonal packing of circles tends to 2-sqrt(3) as n tends to infinity, if the limit exists.Comment: 21 pages, 13 figure

    Minimum Perimeter Rectangles That Enclose Congruent Non-Overlapping Circles

    Get PDF
    We use computational experiments to find the rectangles of minimum perimeter into which a given number n of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. In many of the packings found, the circles form the usual regular square-grid or hexagonal patterns or their hybrids. However, for most values of n in the tested range n =< 5000, e.g., for n = 7, 13, 17, 21, 22, 26, 31, 37, 38, 41, 43...,4997, 4998, 4999, 5000, we prove that the optimum cannot possibly be achieved by such regular arrangements. Usually, the irregularities in the best packings found for such n are small, localized modifications to regular patterns; those irregularities are usually easy to predict. Yet for some such irregular n, the best packings found show substantial, extended irregularities which we did not anticipate. In the range we explored carefully, the optimal packings were substantially irregular only for n of the form n = k(k+1)+1, k = 3, 4, 5, 6, 7, i.e., for n = 13, 21, 31, 43, and 57. Also, we prove that the height-to-width ratio of rectangles of minimum perimeter containing packings of n congruent circles tends to 1 as n tends to infinity.Comment: existence of irregular minimum perimeter packings for n not of the form (10) is conjectured; smallest such n is n=66; existence of irregular minimum area packings is conjectured, e.g. for n=453; locally optimal packings for the two minimization criteria are conjecturally the same (p.22, line 5); 27 pages, 12 figure

    Periodic Planar Disk Packings

    Full text link
    Several conditions are given when a packing of equal disks in a torus is locally maximally dense, where the torus is defined as the quotient of the plane by a two-dimensional lattice. Conjectures are presented that claim that the density of any strictly jammed packings, whose graph does not consist of all triangles and the torus lattice is the standard triangular lattice, is at most nn+1Ï€12\frac{n}{n+1}\frac{\pi}{\sqrt{12}}, where nn is the number of packing disks. Several classes of collectively jammed packings are presented where the conjecture holds.Comment: 26 pages, 13 figure
    • …
    corecore