28 research outputs found

    Multi-Platform Generative Development of Component & Connector Systems using Model and Code Libraries

    Get PDF
    Component-based software engineering aims to reduce software development effort by reusing established components as building blocks of complex systems. Defining components in general-purpose programming languages restricts their reuse to platforms supporting these languages and complicates component composition with implementation details. The vision of model-driven engineering is to reduce the gap between developer intention and implementation details by lifting abstract models to primary development artifacts and systematically transforming these into executable systems. For sufficiently complex systems the transformation from abstract models to platform-specific implementations requires augmentation with platform-specific components. We propose a model-driven mechanism to transform platform-independent logical component & connector architectures into platform-specific implementations combining model and code libraries. This mechanism allows to postpone commitment to a specific platform and thus increases reuse of software architectures and components.Comment: 10 pages, 4 figures, 1 listin

    Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems

    Full text link
    Engineering software for robotics applications requires multidomain and application-specific solutions. Model-driven engineering and modeling language integration provide means for developing specialized, yet reusable models of robotics software architectures. Code generators transform these platform independent models into executable code specific to robotic platforms. Generative software engineering for multidomain applications requires not only the integration of modeling languages but also the integration of validation mechanisms and code generators. In this paper we sketch a conceptual model for code generator composition and show an instantiation of this model in the MontiArc- Automaton framework. MontiArcAutomaton allows modeling software architectures as component and connector models with different component behavior modeling languages. Effective means for code generator integration are a necessity for the post hoc integration of applicationspecific languages in model-based robotics software engineering.Comment: 12 pages, 4 figures, In: Proceedings of the 1st International Workshop on Model-Driven Robot Software Engineering (MORSE 2014), York, Great Britain, Volume 1319 of CEUR Workshop Proceedings, 201

    Integration of Heterogeneous Modeling Languages via Extensible and Composable Language Components

    Get PDF
    Effective model-driven engineering of complex systems requires to appropriately describe different specific system aspects. To this end, efficient integration of different heterogeneous modeling languages is essential. Modeling language integaration is onerous and requires in-depth conceptual and technical knowledge and ef- fort. Traditional modeling lanugage integration approches require language engineers to compose monolithic language aggregates for a specific task or project. Adapting these aggregates cannot be to different contexts requires vast effort and makes these hardly reusable. This contribution presents a method for the engineering of grammar-based language components that can be independently developed, are syntactically composable, and ultimately reusable. To this end, it introduces the concepts of language aggregation, language embed- ding, and language inheritance, as well as their realization in the language workbench MontiCore. The result is a generalizable, systematic, and efficient syntax-oriented composition of languages that allows the agile employment of modeling languages efficiently tailored for individual software projects.Comment: 12 pages, 11 figures. Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development. Angers, Loire Valley, France, pp. 19-31, 201

    Towards Product Lining Model-Driven Development Code Generators

    Get PDF
    A code generator systematically transforms compact models to detailed code. Today, code generation is regarded as an integral part of model-driven development (MDD). Despite its relevance, the development of code generators is an inherently complex task and common methodologies and architectures are lacking. Additionally, reuse and extension of existing code generators only exist on individual parts. A systematic development and reuse based on a code generator product line is still in its infancy. Thus, the aim of this paper is to identify the mechanism necessary for a code generator product line by (a) analyzing the common product line development approach and (b) mapping those to a code generator specific infrastructure. As a first step towards realizing a code generator product line infrastructure, we present a component-based implementation approach based on ideas of variability-aware module systems and point out further research challenges.Comment: 6 pages, 1 figure, Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development, pp. 539-545, Angers, France, SciTePress, 201
    corecore