213 research outputs found

    A Survey Report On Elliptic Curve Cryptography

    Get PDF
    The paper presents an extensive and careful study of elliptic curve cryptography (ECC) and its applications. This paper also discuss the arithmetic involved in elliptic curve  and how these curve operations is crucial in determining the performance of cryptographic systems. It also presents  different forms of elliptic curve in various coordinate system , specifying which is most widely used and why. It also explains how isogenenies between elliptic curve  provides the secure ECC. Exentended form of elliptic curve i.e hyperelliptic curve has been presented here with its pros and cons. Performance of ECC and HEC is also discussed based on scalar multiplication and DLP. Keywords: Elliptic curve cryptography (ECC), isogenies, hyperelliptic curve (HEC) , Discrete Logarithm Problem (DLP), Integer  Factorization , Binary Field, Prime FieldDOI:http://dx.doi.org/10.11591/ijece.v1i2.8

    Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians

    Get PDF
    International audienceThe first step in elliptic curve scalar multiplication algorithms based on scalar decompositions using efficient endomorphisms---including Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) multiplication, as well as higher-dimensional and higher-genus constructions---is to produce a short basis of a certain integer lattice involving the eigenvalues of the endomorphisms. The shorter the basis vectors, the shorter the decomposed scalar coefficients, and the faster the resulting scalar multiplication. Typically, knowledge of the eigenvalues allows us to write down a long basis, which we then reduce using the Euclidean algorithm, Gauss reduction, LLL, or even a more specialized algorithm. In this work, we use elementary facts about quadratic rings to immediately write down a short basis of the lattice for the GLV, GLS, GLV+GLS, and Q-curve constructions on elliptic curves, and for genus 2 real multiplication constructions. We do not pretend that this represents a significant optimization in scalar multiplication, since the lattice reduction step is always an offline precomputation---but it does give a better insight into the structure of scalar decompositions. In any case, it is always more convenient to use a ready-made short basis than it is to compute a new one

    Group law computations on Jacobians of hyperelliptic curves

    Get PDF
    We derive an explicit method of computing the composition step in Cantor’s algorithm for group operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor’s general composition involves arithmetic in the polynomial ring F_q[x], the algorithm we propose solves a linear system over the base field which can be written down directly from the Mumford coordinates of the group elements. We apply this method to give more efficient formulas for group operations in both affine and projective coordinates for cryptographic systems based on Jacobians of genus 2 hyperelliptic curves in general form
    • …
    corecore