749 research outputs found

    Data Imputation through the Identification of Local Anomalies

    Get PDF
    We introduce a comprehensive and statistical framework in a model free setting for a complete treatment of localized data corruptions due to severe noise sources, e.g., an occluder in the case of a visual recording. Within this framework, we propose i) a novel algorithm to efficiently separate, i.e., detect and localize, possible corruptions from a given suspicious data instance and ii) a Maximum A Posteriori (MAP) estimator to impute the corrupted data. As a generalization to Euclidean distance, we also propose a novel distance measure, which is based on the ranked deviations among the data attributes and empirically shown to be superior in separating the corruptions. Our algorithm first splits the suspicious instance into parts through a binary partitioning tree in the space of data attributes and iteratively tests those parts to detect local anomalies using the nominal statistics extracted from an uncorrupted (clean) reference data set. Once each part is labeled as anomalous vs normal, the corresponding binary patterns over this tree that characterize corruptions are identified and the affected attributes are imputed. Under a certain conditional independency structure assumed for the binary patterns, we analytically show that the false alarm rate of the introduced algorithm in detecting the corruptions is independent of the data and can be directly set without any parameter tuning. The proposed framework is tested over several well-known machine learning data sets with synthetically generated corruptions; and experimentally shown to produce remarkable improvements in terms of classification purposes with strong corruption separation capabilities. Our experiments also indicate that the proposed algorithms outperform the typical approaches and are robust to varying training phase conditions

    Differentiable Programming Tensor Networks

    Full text link
    Differentiable programming is a fresh programming paradigm which composes parameterized algorithmic components and trains them using automatic differentiation (AD). The concept emerges from deep learning but is not only limited to training neural networks. We present theory and practice of programming tensor network algorithms in a fully differentiable way. By formulating the tensor network algorithm as a computation graph, one can compute higher order derivatives of the program accurately and efficiently using AD. We present essential techniques to differentiate through the tensor networks contractions, including stable AD for tensor decomposition and efficient backpropagation through fixed point iterations. As a demonstration, we compute the specific heat of the Ising model directly by taking the second order derivative of the free energy obtained in the tensor renormalization group calculation. Next, we perform gradient based variational optimization of infinite projected entangled pair states for quantum antiferromagnetic Heisenberg model and obtain start-of-the-art variational energy and magnetization with moderate efforts. Differentiable programming removes laborious human efforts in deriving and implementing analytical gradients for tensor network programs, which opens the door to more innovations in tensor network algorithms and applications.Comment: Typos corrected, discussion and refs added; revised version accepted for publication in PRX. Source code available at https://github.com/wangleiphy/tensorgra

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Active Learning of Points-To Specifications

    Full text link
    When analyzing programs, large libraries pose significant challenges to static points-to analysis. A popular solution is to have a human analyst provide points-to specifications that summarize relevant behaviors of library code, which can substantially improve precision and handle missing code such as native code. We propose ATLAS, a tool that automatically infers points-to specifications. ATLAS synthesizes unit tests that exercise the library code, and then infers points-to specifications based on observations from these executions. ATLAS automatically infers specifications for the Java standard library, and produces better results for a client static information flow analysis on a benchmark of 46 Android apps compared to using existing handwritten specifications

    Challenges in Statistical Theory: Complex Data Structures and Algorithmic Optimization

    Get PDF
    Technological developments have created a constant incoming stream of complex new data structures that need analysis. Modern statistics therefore means mathematically sophisticated new statistical theory that generates or supports innovative data-analytic methodologies for complex data structures. Inherent in many of these methodologies are challenging numerical optimization methods. The proposed workshop intends to bring together experts from mathematical statistics as well as statisticians involved in serious modern applications and computing. The primary goal of this meeting was to advance the mathematical and methodological underpinnings of modern statistics for complex data. Particular focus was given to the advancement of theory and methods under non-stationarity and complex dependence structures including (multivariate) financial time series, scientific data analysis in neurosciences and bio-physics, estimation under shape constraints, and highdimensional discrimination/classification
    corecore