1,757 research outputs found

    Sparse grid quadrature on products of spheres

    Full text link
    We examine sparse grid quadrature on weighted tensor products (WTP) of reproducing kernel Hilbert spaces on products of the unit sphere, in the case of worst case quadrature error for rules with arbitrary quadrature weights. We describe a dimension adaptive quadrature algorithm based on an algorithm of Hegland (2003), and also formulate a version of Wasilkowski and Wozniakowski's WTP algorithm (1999), here called the WW algorithm. We prove that the dimension adaptive algorithm is optimal in the sense of Dantzig (1957) and therefore no greater in cost than the WW algorithm. Both algorithms therefore have the optimal asymptotic rate of convergence given by Theorem 3 of Wasilkowski and Wozniakowski (1999). A numerical example shows that, even though the asymptotic convergence rate is optimal, if the dimension weights decay slowly enough, and the dimensionality of the problem is large enough, the initial convergence of the dimension adaptive algorithm can be slow.Comment: 34 pages, 6 figures. Accepted 7 January 2015 for publication in Numerical Algorithms. Revised at page proof stage to (1) update email address; (2) correct the accent on "Wozniakowski" on p. 7; (3) update reference 2; (4) correct references 3, 18 and 2

    A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger

    Full text link
    We present an adaptive version of the Multi-Index Monte Carlo method, introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with coefficients that are random fields. A classical technique for sampling from these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm is based on the adaptive algorithm used in sparse grid cubature as introduced by Gerstner and Griebel (2003), and automatically chooses the number of terms needed in this expansion, as well as the required spatial discretizations of the PDE model. We apply the method to a simplified model of a heat exchanger with random insulator material, where the stochastic characteristics are modeled as a lognormal random field, and we show consistent computational savings

    Back to the Future: Economic Self-Organisation and Maximum Entropy Prediction

    Get PDF
    This paper shows that signal restoration methodology is appropriate for predicting the equilibrium state of certain economic systems. A formal justification for this is provided by proving the existence of finite improvement paths in object allocation problems under weak assumptions on preferences, linking any initial condition to a Nash equilibrium. Because a finite improvement path is made up of a sequence of systematic best-responses, backwards movement from the equilibrium back to the initial condition can be treated like the realisation of a noise process. This underpins the use of signal restoration to predict the equilibrium from the initial condition, and an illustration is provided through an application of maximum entropy signal restoration to the Schelling model of segregation

    Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    Full text link
    We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner
    • …
    corecore