340 research outputs found

    Variation Analysis, Fault Modeling and Yield Improvement of Emerging Spintronic Memories

    Get PDF

    Energy Harvesting and Sensor Based Hardware Security Primitives for Cyber-Physical Systems

    Get PDF
    The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. Although cyber-physical systems can offer numerous advantages to society, their large scale adoption does not come without risks. Internet of Things (IoT) devices can be considered a significant component within cyber-physical systems. They can provide network communication in addition to controlling the various sensors and actuators that exist within the larger cyber-physical system. The adoption of IoT features can also provide attackers with new potential avenues to access and exploit a system\u27s vulnerabilities. Previously, existing systems could more or less be considered a closed system with few potential points of access for attackers. Security was thus not typically a core consideration when these systems were originally designed. The cumulative effect is that these systems are now vulnerable to new security risks without having native security countermeasures that can easily address these vulnerabilities. Even just adding standard security features to these systems is itself not a simple task. The devices that make up these systems tend to have strict resource constraints in the form of power consumption and processing power. In this dissertation, we explore how security devices known as Physically Unclonable Functions (PUFs) could be used to address these concerns. PUFs are a class of circuits that are unique and unclonable due to inherent variations caused by the device manufacturing process. We can take advantage of these PUF properties by using the outputs of PUFs to generate secret keys or pseudonyms that are similarly unique and unclonable. Existing PUF designs are commonly based around transistor level variations in a special purpose integrated circuit (IC). Integrating these designs within a system would still require additional hardware along with system modification to interact with the device. We address these concerns by proposing a novel PUF design methodology for the creation of PUFs whose integration within these systems would minimize the cost of redesigning the system by reducing the need to add additional hardware. This goal is achieved by creating PUF designs from components that may already exist within these systems. A PUF designed from existing components creates the possibility of adding a PUF (and thus security features) to the system without actually adding any additional hardware. This could allow PUFs to become a more attractive security option for integration with resource constrained devices. Our proposed approach specifically targets sensors and energy harvesting devices since they can provide core functions within cyber-physical systems such as power generation and sensing capabilities. These components are known to exhibit variations due to the manufacturing process and could thus be utilized to design a PUF. Our first contribution is the proposal of a novel PUF design methodology based on using components which are already commonly found within cyber-physical systems. The proposed methodology uses eight sensors or energy harvesting devices along with a microcontroller. It is unlikely that single type of sensor or energy harvester will exist in all possible cyber-physical systems. Therefore, it is important to create a range of designs in order to reach a greater portion of cyber-physical systems. The second contribution of this work is the design of a PUF based on piezo sensors. Our third contribution is the design of a PUF that utilizes thermistor temperature sensors. The fourth contribution of this work is a proposed solar cell based PUF design. Furthermore, as a fifth contribution of this dissertation we evaluate a selection of common solar cell materials to establish which type of solar cell would be best suited to the creation of a PUF based on the operating conditions. The viability of the proposed designs is evaluated through testing in terms of reliability and uniformity. In addition, Monte Carlo simulations are performed to evaluate the uniqueness property of the designs. For our final contribution we illustrate the security benefits that can be achieved through the adoption of PUFs by cyber-physical systems. For this purpose we chose to highlight vehicles since they are a very popular example of a cyber-physical system and they face unique security challenges which are not readily solvable by standard solutions. Our contribution is the proposal of a novel controller area network (CAN) security framework that is based on PUFs. The framework does not require any changes to the underlying CAN protocol and also minimizes the amount of additional message passing overhead needed for its operation. The proposed framework is a good example of how the cost associated with implementing such a framework could be further reduced through the adoption of our proposed PUF designs. The end result is a method which could introduce security to an inherently insecure system while also making its integration as seamless as possible by attempting to minimize the need for additional hardware

    Practical Techniques for Improving Performance and Evaluating Security on Circuit Designs

    Get PDF
    As the modern semiconductor technology approaches to nanometer era, integrated circuits (ICs) are facing more and more challenges in meeting performance demand and security. With the expansion of markets in mobile and consumer electronics, the increasing demands require much faster delivery of reliable and secure IC products. In order to improve the performance and evaluate the security of emerging circuits, we present three practical techniques on approximate computing, split manufacturing and analog layout automation. Approximate computing is a promising approach for low-power IC design. Although a few accuracy-configurable adder (ACA) designs have been developed in the past, these designs tend to incur large area overheads as they rely on either redundant computing or complicated carry prediction. We investigate a simple ACA design that contains no redundancy or error detection/correction circuitry and uses very simple carry prediction. The simulation results show that our design dominates the latest previous work on accuracy-delay-power tradeoff while using 39% less area. One variant of this design provides finer-grained and larger tunability than that of the previous works. Moreover, we propose a delay-adaptive self-configuration technique to further improve the accuracy-delay-power tradeoff. Split manufacturing prevents attacks from an untrusted foundry. The untrusted foundry has front-end-of-line (FEOL) layout and the original circuit netlist and attempts to identify critical components on the layout for Trojan insertion. Although defense methods for this scenario have been developed, the corresponding attack technique is not well explored. Hence, the defense methods are mostly evaluated with the k-security metric without actual attacks. We develop a new attack technique based on structural pattern matching. Experimental comparison with existing attack shows that the new attack technique achieves about the same success rate with much faster speed for cases without the k-security defense, and has a much better success rate at the same runtime for cases with the k-security defense. The results offer an alternative and practical interpretation for k-security in split manufacturing. Analog layout automation is still far behind its digital counterpart. We develop the layout automation framework for analog/mixed-signal ICs. A hierarchical layout synthesis flow which works in bottom-up manner is presented. To ensure the qualified layouts for better circuit performance, we use the constraint-driven placement and routing methodology which employs the expert knowledge via design constraints. The constraint-driven placement uses simulated annealing process to find the optimal solution. The packing represented by sequence pairs and constraint graphs can simultaneously handle different kinds of placement constraints. The constraint-driven routing consists of two stages, integer linear programming (ILP) based global routing and sequential detailed routing. The experiment results demonstrate that our flow can handle complicated hierarchical designs with multiple design constraints. Furthermore, the placement performance can be further improved by using mixed-size block placement which works on large blocks in priority

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41
    • …
    corecore