16,465 research outputs found

    Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations

    Full text link
    We analyze the convergence of compressive sensing based sampling techniques for the efficient evaluation of functionals of solutions for a class of high-dimensional, affine-parametric, linear operator equations which depend on possibly infinitely many parameters. The proposed algorithms are based on so-called "non-intrusive" sampling of the high-dimensional parameter space, reminiscent of Monte-Carlo sampling. In contrast to Monte-Carlo, however, a functional of the parametric solution is then computed via compressive sensing methods from samples of functionals of the solution. A key ingredient in our analysis of independent interest consists in a generalization of recent results on the approximate sparsity of generalized polynomial chaos representations (gpc) of the parametric solution families, in terms of the gpc series with respect to tensorized Chebyshev polynomials. In particular, we establish sufficient conditions on the parametric inputs to the parametric operator equation such that the Chebyshev coefficients of the gpc expansion are contained in certain weighted p\ell_p-spaces for 0<p10<p\leq 1. Based on this we show that reconstructions of the parametric solutions computed from the sampled problems converge, with high probability, at the L2L_2, resp. LL_\infty convergence rates afforded by best ss-term approximations of the parametric solution up to logarithmic factors.Comment: revised version, 27 page

    Multi-index Stochastic Collocation convergence rates for random PDEs with parametric regularity

    Full text link
    We analyze the recent Multi-index Stochastic Collocation (MISC) method for computing statistics of the solution of a partial differential equation (PDEs) with random data, where the random coefficient is parametrized by means of a countable sequence of terms in a suitable expansion. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the space of random data and, naturally, the error analysis uses the joint regularity of the solution with respect to both the variables in the physical domain and parametric variables. In MISC, the number of problem solutions performed at each discretization level is not determined by balancing the spatial and stochastic components of the error, but rather by suitably extending the knapsack-problem approach employed in the construction of the quasi-optimal sparse-grids and Multi-index Monte Carlo methods. We use a greedy optimization procedure to select the most effective mixed differences to include in the MISC estimator. We apply our theoretical estimates to a linear elliptic PDEs in which the log-diffusion coefficient is modeled as a random field, with a covariance similar to a Mat\'ern model, whose realizations have spatial regularity determined by a scalar parameter. We conduct a complexity analysis based on a summability argument showing algebraic rates of convergence with respect to the overall computational work. The rate of convergence depends on the smoothness parameter, the physical dimensionality and the efficiency of the linear solver. Numerical experiments show the effectiveness of MISC in this infinite-dimensional setting compared with the Multi-index Monte Carlo method and compare the convergence rate against the rates predicted in our theoretical analysis

    Monte Carlo Greeks for financial products via approximative transition densities

    Full text link
    In this paper we introduce efficient Monte Carlo estimators for the valuation of high-dimensional derivatives and their sensitivities (''Greeks''). These estimators are based on an analytical, usually approximative representation of the underlying density. We study approximative densities obtained by the WKB method. The results are applied in the context of a Libor market model.Comment: 24 page

    Multilevel Sparse Grid Methods for Elliptic Partial Differential Equations with Random Coefficients

    Full text link
    Stochastic sampling methods are arguably the most direct and least intrusive means of incorporating parametric uncertainty into numerical simulations of partial differential equations with random inputs. However, to achieve an overall error that is within a desired tolerance, a large number of sample simulations may be required (to control the sampling error), each of which may need to be run at high levels of spatial fidelity (to control the spatial error). Multilevel sampling methods aim to achieve the same accuracy as traditional sampling methods, but at a reduced computational cost, through the use of a hierarchy of spatial discretization models. Multilevel algorithms coordinate the number of samples needed at each discretization level by minimizing the computational cost, subject to a given error tolerance. They can be applied to a variety of sampling schemes, exploit nesting when available, can be implemented in parallel and can be used to inform adaptive spatial refinement strategies. We extend the multilevel sampling algorithm to sparse grid stochastic collocation methods, discuss its numerical implementation and demonstrate its efficiency both theoretically and by means of numerical examples

    Multi-level higher order QMC Galerkin discretization for affine parametric operator equations

    Full text link
    We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [\emph{F.Y.~Kuo, Ch.~Schwab, and I.H.~Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient} (in review)] and the single level higher order analysis in [\emph{J.~Dick, F.Y.~Kuo, Q.T.~Le~Gia, D.~Nuyens, and Ch.~Schwab, Higher order QMC Galerkin discretization for parametric operator equations} (in review)]. We cover, in particular, both definite as well as indefinite, strongly elliptic systems of partial differential equations (PDEs) in non-smooth domains, and discuss in detail the impact of higher order derivatives of {\KL} eigenfunctions in the parametrization of random PDE inputs on the convergence results. Based on our \emph{a-priori} error bounds, concrete choices of algorithm parameters are proposed in order to achieve a prescribed accuracy under minimal computational work. Problem classes and sufficient conditions on data are identified where multi-level higher order QMC Petrov-Galerkin algorithms outperform the corresponding single level versions of these algorithms. Numerical experiments confirm the theoretical results

    Sparse Deterministic Approximation of Bayesian Inverse Problems

    Get PDF
    We present a parametric deterministic formulation of Bayesian inverse problems with input parameter from infinite dimensional, separable Banach spaces. In this formulation, the forward problems are parametric, deterministic elliptic partial differential equations, and the inverse problem is to determine the unknown, parametric deterministic coefficients from noisy observations comprising linear functionals of the solution. We prove a generalized polynomial chaos representation of the posterior density with respect to the prior measure, given noisy observational data. We analyze the sparsity of the posterior density in terms of the summability of the input data's coefficient sequence. To this end, we estimate the fluctuations in the prior. We exhibit sufficient conditions on the prior model in order for approximations of the posterior density to converge at a given algebraic rate, in terms of the number NN of unknowns appearing in the parameteric representation of the prior measure. Similar sparsity and approximation results are also exhibited for the solution and covariance of the elliptic partial differential equation under the posterior. These results then form the basis for efficient uncertainty quantification, in the presence of data with noise
    corecore