51,502 research outputs found

    A unified approach to nonlinearity, structural change and outliers

    Get PDF
    This paper demonstrates that the class of conditionally linear and Gaussian state-space models offers a general and convenient framework for simultaneously handling nonlinearity, structural change and outliers in time series. Many popular nonlinear time series models, including threshold, smooth transition and Markov-Switching models, can be written in state-space form. It is then straightforward to add components that capture parameter instability and intervention effects. We advocate a Bayesian approach to estimation and inference, using an efficient implementation of Markov Chain Monte Carlo sampling schemes for such linear dynamic mixture models. The general modelling framework and the Bayesian methodology are illustrated by means of several examples. An application to quarterly industrial production growth rates for the G7 countries demonstrates the empirical usefulness of the approach

    Mean Field Limit of a Behavioral Financial Market Model

    Full text link
    In the past decade there has been a growing interest in agent-based econophysical financial market models. The goal of these models is to gain further insights into stylized facts of financial data. We derive the mean field limit of the econophysical model by Cross, Grinfeld, Lamba and Seaman (Physica A, 354) and show that the kinetic limit is a good approximation of the original model. Our kinetic model is able to replicate some of the most prominent stylized facts, namely fat-tails of asset returns, uncorrelated stock price returns and volatility clustering. Interestingly, psychological misperceptions of investors can be accounted to be the origin of the appearance of stylized facts. The mesoscopic model allows us to study the model analytically. We derive steady state solutions and entropy bounds of the deterministic skeleton. These first analytical results already guide us to explanations for the complex dynamics of the model

    Efficient Gibbs Sampling for Markov Switching GARCH Models

    Full text link
    We develop efficient simulation techniques for Bayesian inference on switching GARCH models. Our contribution to existing literature is manifold. First, we discuss different multi-move sampling techniques for Markov Switching (MS) state space models with particular attention to MS-GARCH models. Our multi-move sampling strategy is based on the Forward Filtering Backward Sampling (FFBS) applied to an approximation of MS-GARCH. Another important contribution is the use of multi-point samplers, such as the Multiple-Try Metropolis (MTM) and the Multiple trial Metropolize Independent Sampler, in combination with FFBS for the MS-GARCH process. In this sense we ex- tend to the MS state space models the work of So [2006] on efficient MTM sampler for continuous state space models. Finally, we suggest to further improve the sampler efficiency by introducing the antithetic sampling of Craiu and Meng [2005] and Craiu and Lemieux [2007] within the FFBS. Our simulation experiments on MS-GARCH model show that our multi-point and multi-move strategies allow the sampler to gain efficiency when compared with single-move Gibbs sampling.Comment: 38 pages, 7 figure

    Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime

    Full text link
    An autoregressive process with Markov regime is an autoregressive process for which the regression function at each time point is given by a nonobservable Markov chain. In this paper we consider the asymptotic properties of the maximum likelihood estimator in a possibly nonstationary process of this kind for which the hidden state space is compact but not necessarily finite. Consistency and asymptotic normality are shown to follow from uniform exponential forgetting of the initial distribution for the hidden Markov chain conditional on the observations.Comment: Published at http://dx.doi.org/10.1214/009053604000000021 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore