390 research outputs found

    Strong Stability Preserving Two-Step Runge-Kutta Methods

    Get PDF
    We investigate the strong stability preserving (SSP) property of two-step Runge– Kutta (TSRK) methods. We prove that all SSP TSRK methods belong to a particularly simple\ud subclass of TSRK methods, in which stages from the previous step are not used. We derive simple order conditions for this subclass. Whereas explicit SSP Runge–Kutta methods have order at most four, we prove that explicit SSP TSRK methods have order at most eight. We present TSRK methods of up to eighth order that were found by numerical search. These methods have larger SSP coefficients than any known methods of the same order of accuracy, and may be implemented in a form with relatively modest storage requirements. The usefulness of the TSRK methods is demonstrated through numerical examples, including integration of very high order WENO discretizations

    Implicit-Explicit multistep methods for hyperbolic systems with multiscale relaxation

    Get PDF
    We consider the development of high order space and time numerical methods based on Implicit-Explicit (IMEX) multistep time integrators for hyperbolic systems with relaxation. More specifically, we consider hyperbolic balance laws in which the convection and the source term may have very different time and space scales. As a consequence the nature of the asymptotic limit changes completely, passing from a hyperbolic to a parabolic system. From the computational point of view, standard numerical methods designed for the fluid-dynamic scaling of hyperbolic systems with relaxation present several drawbacks and typically lose efficiency in describing the parabolic limit regime. In this work, in the context of Implicit-Explicit linear multistep methods we construct high order space-time discretizations which are able to handle all the different scales and to capture the correct asymptotic behavior, independently from its nature, without time step restrictions imposed by the fast scales. Several numerical examples confirm the theoretical analysis

    Special boundedness properties in numerical initial value problems

    Get PDF
    For Runge-Kutta methods, linear multistep methods and other classes of general linear methods much attention has been paid in the literature to important nonlinear stability properties known as total-variation-diminishing (TVD), strong stability preserving (SSP) and monotonicity. Stepsize conditions guaranteeing these properties were studied by Shu \& Osher (1988) and in numerous subsequent papers. Unfortunately, for many useful methods it has turned out that these properties do not hold. For this reason attention has been paid in the recent literature to the related and more general properties called total-variation-bounded (TVB) and boundedness. In the present paper we focus on stepsize conditions guaranteeing boundedness properties of a special type. These boundedness properties are optimal, and distinguish themselves also from earlier boundedness results by being relevant to sublinear functionals, discrete maximum principles and preservation of nonnegativity. Moreover, the corresponding stepsize conditions are more easily verified in practical situations than the conditions for general boundedness given thus far in the literature. The theoretical results are illustrated by application to the two-step Adams-Bashforth method and a class of two-stage multistep methods

    A high order accurate bound-preserving compact finite difference scheme for scalar convection diffusion equations

    Full text link
    We show that the classical fourth order accurate compact finite difference scheme with high order strong stability preserving time discretizations for convection diffusion problems satisfies a weak monotonicity property, which implies that a simple limiter can enforce the bound-preserving property without losing conservation and high order accuracy. Higher order accurate compact finite difference schemes satisfying the weak monotonicity will also be discussed

    Stepsize Restrictions for Boundedness and Monotonicity of Multistep Methods

    Get PDF
    In this paper nonlinear monotonicity and boundedness properties are analyzed for linear multistep methods. We focus on methods which satisfy a weaker boundedness condition than strict monotonicity for arbitrary starting values. In this way, many linear multistep methods of practical interest are included in the theory. Moreover, it will be shown that for such methods monotonicity can still be valid with suitable Runge-Kutta starting procedures. Restrictions on the stepsizes are derived that are not only sufficient but also necessary for these boundedness and monotonicity properties

    High-order TVD and TVB linear multistep methods

    Get PDF
    We consider linear multistep methods that possess the TVD (total variation diminishing) or TVB (total variation bounded) properties, or related general monotonicity and boundedness properties. Strict monotonicity or TVD, in terms of arbitrary starting values for the multistep schemes, is only valid for a small class of methods, under very stringent step size restrictions. This makes them uncompetitive to the TVD Runge-Kutta methods. By relaxing these strict monotonicity requirements a larger class of methods can be considered, including many methods of practical interest. In this paper we construct linear multistep methods of high-order (up to six) that possess relaxed monotonicity or boundedness properties with optimal step size conditions. Numerical experiments show that the new schemes perform much better than the classical TVD multistep schemes. Moreover there is a substantial gain in efficiency compared to recently constructed TVD Runge-Kutta methods
    • …
    corecore