147 research outputs found

    On resilient control of dynamical flow networks

    Full text link
    Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness and complexity due to the recent technological advancements. The problem has motivated a considerable amount of research within the last few years, particularly focused on the dynamical aspects of network flows, complementing more classical static network flow optimization approaches. In this tutorial paper, a class of single-commodity first-order models of dynamical flow networks is considered. A few results recently appeared in the literature and dealing with stability and robustness of dynamical flow networks are gathered and originally presented in a unified framework. In particular, (differential) stability properties of monotone dynamical flow networks are treated in some detail, and the notion of margin of resilience is introduced as a quantitative measure of their robustness. While emphasizing methodological aspects -- including structural properties, such as monotonicity, that enable tractability and scalability -- over the specific applications, connections to well-established road traffic flow models are made.Comment: accepted for publication in Annual Reviews in Control, 201

    On resilient control of dynamical flow networks

    Get PDF
    Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness and complexity due to the recent technological advancements. The problem has motivated a considerable amount of research within the last few years, particularly focused on the dynamical aspects of network flows, complementing more classical static network flow optimization approaches.In this tutorial paper, a class of single-commodity first-order models of dynamical flow networks is considered. A few results recently appeared in the literature and dealing with stability and robustness of dynamical flow networks are gathered and originally presented in a unified framework. In particular, (differential) stability properties of monotone dynamical flow networks are treated in some detail, and the notion of margin of resilience is introduced as a quantitative measure of their robustness. While emphasizing methodological aspects -including structural properties, such as monotonicity, that enable tractability and scalability- over the specific applications, connections to well-established road traffic flow models are made

    Geometric Properties of Isostables and Basins of Attraction of Monotone Systems

    Get PDF
    In this paper, we study geometric properties of basins of attraction of monotone systems. Our results are based on a combination of monotone systems theory and spectral operator theory. We exploit the framework of the Koopman operator, which provides a linear infinite-dimensional description of nonlinear dynamical systems and spectral operator-theoretic notions such as eigenvalues and eigenfunctions. The sublevel sets of the dominant eigenfunction form a family of nested forward-invariant sets and the basin of attraction is the largest of these sets. The boundaries of these sets, called isostables, allow studying temporal properties of the system. Our first observation is that the dominant eigenfunction is increasing in every variable in the case of monotone systems. This is a strong geometric property which simplifies the computation of isostables. We also show how variations in basins of attraction can be bounded under parametric uncertainty in the vector field of monotone systems. Finally, we study the properties of the parameter set for which a monotone system is multistable. Our results are illustrated on several systems of two to four dimensions.Comment: 12 pages, to appear in IEEE Transaction on Automatic Contro
    • …
    corecore