1,519 research outputs found

    On the Generation of Realistic and Robust Counterfactual Explanations for Algorithmic Recourse

    Get PDF
    This recent widespread deployment of machine learning algorithms presents many new challenges. Machine learning algorithms are usually opaque and can be particularly difficult to interpret. When humans are involved, algorithmic and automated decisions can negatively impact peopleā€™s lives. Therefore, end users would like to be insured against potential harm. One popular way to achieve this is to provide end users access to algorithmic recourse, which gives end users negatively affected by algorithmic decisions the opportunity to reverse unfavorable decisions, e.g., from a loan denial to a loan acceptance. In this thesis, we design recourse algorithms to meet various end user needs. First, we propose methods for the generation of realistic recourses. We use generative models to suggest recourses likely to occur under the data distribution. To this end, we shift the recourse action from the input space to the generative modelā€™s latent space, allowing to generate counterfactuals that lie in regions with data support. Second, we observe that small changes applied to the recourses prescribed to end users likely invalidate the suggested recourse after being nosily implemented in practice. Motivated by this observation, we design methods for the generation of robust recourses and for assessing the robustness of recourse algorithms to data deletion requests. Third, the lack of a commonly used code-base for counterfactual explanation and algorithmic recourse algorithms and the vast array of evaluation measures in literature make it difficult to compare the per formance of different algorithms. To solve this problem, we provide an open source benchmarking library that streamlines the evaluation process and can be used for benchmarking, rapidly developing new methods, and setting up new experiments. In summary, our work contributes to a more reliable interaction of end users and machine learned models by covering fundamental aspects of the recourse process and suggests new solutions towards generating realistic and robust counterfactual explanations for algorithmic recourse

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Less is More: Restricted Representations for Better Interpretability and Generalizability

    Get PDF
    Deep neural networks are prevalent in supervised learning for large amounts of tasks such as image classification, machine translation and even scientific discovery. Their success is often at the sacrifice of interpretability and generalizability. The increasing complexity of models and involvement of the pre-training process make the inexplicability more imminent. The outstanding performance when labeled data are abundant while prone to overfit when labeled data are limited demonstrates the difficulty of deep neural networks' generalizability to different datasets. This thesis aims to improve interpretability and generalizability by restricting representations. We choose to approach interpretability by focusing on attribution analysis to understand which features contribute to prediction on BERT, and to approach generalizability by focusing on effective methods in a low-data regime. We consider two strategies of restricting representations: (1) adding bottleneck, and (2) introducing compression. Given input x, suppose we want to learn y with the latent representation z (i.e. xā†’zā†’y), adding bottleneck means adding function R such that L(R(z)) < L(z) and introducing compression means adding function R so that L(R(y)) < L(y) where L refers to the number of bits. In other words, the restriction is added either in the middle of the pipeline or at the end of it. We first introduce how adding information bottleneck can help attribution analysis and apply it to investigate BERT's behavior on text classification in Chapter 3. We then extend this attribution method to analyze passage reranking in Chapter 4, where we conduct a detailed analysis to understand cross-layer and cross-passage behavior. Adding bottleneck can not only provide insight to understand deep neural networks but can also be used to increase generalizability. In Chapter 5, we demonstrate the equivalence between adding bottleneck and doing neural compression. We then leverage this finding with a framework called Non-Parametric learning by Compression with Latent Variables (NPC-LV), and show how optimizing neural compressors can be used in the non-parametric image classification with few labeled data. To further investigate how compression alone helps non-parametric learning without latent variables (NPC), we carry out experiments with a universal compressor gzip on text classification in Chapter 6. In Chapter 7, we elucidate methods of adopting the perspective of doing compression but without the actual process of compression using T5. Using experimental results in passage reranking, we show that our method is highly effective in a low-data regime when only one thousand query-passage pairs are available. In addition to the weakly supervised scenario, we also extend our method to large language models like GPT under almost no supervision --- in one-shot and zero-shot settings. The experiments show that without extra parameters or in-context learning, GPT can be used for semantic similarity, text classification, and text ranking and outperform strong baselines, which is presented in Chapter 8. The thesis proposes to tackle two big challenges in machine learning --- "interpretability" and "generalizability" through restricting representation. We provide both theoretical derivation and empirical results to show the effectiveness of using information-theoretic approaches. We not only design new algorithms but also provide numerous insights on why and how "compression" is so important in understanding deep neural networks and improving generalizability

    ReLOAD: reinforcement learning with optimistic ascent-descent for last-iterate convergence in constrained MDPs

    Get PDF
    In recent years, reinforcement learning (RL) has been applied to real-world problems with increasing success. Such applications often require to put constraints on the agentā€™s behavior. Existing algorithms for constrained RL (CRL) rely on gradient descent-ascent, but this approach comes with a caveat. While these algorithms are guaranteed to converge on average, they do not guarantee last-iterate convergence, i.e., the current policy of the agent may never converge to the optimal solution. In practice, it is often observed that the policy alternates between satisfying the constraints and maximizing the reward, rarely accomplishing both objectives simultaneously. Here, we address this problem by introducing Reinforcement Learning with Optimistic Ascent-Descent (ReLOAD), a principled CRL method with guaranteed last-iterate convergence. We demonstrate its empirical effectiveness on a wide variety of CRL problems including discrete MDPs and continuous control. In the process we establish a benchmark of challenging CRL problems

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ļ¬fth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ļ¬elds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiļ¬ed Proportional Conļ¬‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiļ¬ers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiļ¬cation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiļ¬cation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiļ¬cation, and hybrid techniques mixing deep learning with belief functions as well

    Implicit Loss of Surjectivity and Facial Reduction: Theory and Applications

    Get PDF
    Facial reduction, pioneered by Borwein and Wolkowicz, is a preprocessing method that is commonly used to obtain strict feasibility in the reformulated, reduced constraint system. The importance of strict feasibility is often addressed in the context of the convergence results for interior point methods. Beyond the theoretical properties that the facial reduction conveys, we show that facial reduction, not only limited to interior point methods, leads to strong numerical performances in different classes of algorithms. In this thesis we study various consequences and the broad applicability of facial reduction. The thesis is organized in two parts. In the first part, we show the instabilities accompanied by the absence of strict feasibility through the lens of facially reduced systems. In particular, we exploit the implicit redundancies, revealed by each nontrivial facial reduction step, resulting in the implicit loss of surjectivity. This leads to the two-step facial reduction and two novel related notions of singularity. For the area of semidefinite programming, we use these singularities to strengthen a known bound on the solution rank, the Barvinok-Pataki bound. For the area of linear programming, we reveal degeneracies caused by the implicit redundancies. Furthermore, we propose a preprocessing tool that uses the simplex method. In the second part of this thesis, we continue with the semidefinite programs that do not have strictly feasible points. We focus on the doubly-nonnegative relaxation of the binary quadratic program and a semidefinite program with a nonlinear objective function. We closely work with two classes of algorithms, the splitting method and the Gauss-Newton interior point method. We elaborate on the advantages in building models from facial reduction. Moreover, we develop algorithms for real-world problems including the quadratic assignment problem, the protein side-chain positioning problem, and the key rate computation for quantum key distribution. Facial reduction continues to play an important role for providing robust reformulated models in both the theoretical and the practical aspects, resulting in successful numerical performances

    Improved guarantees for optimal Nash equilibrium seeking and bilevel variational inequalities

    Full text link
    We consider a class of hierarchical variational inequality (VI) problems that subsumes VI-constrained optimization and several other important problem classes including the optimal solution selection problem, the optimal Nash equilibrium (NE) seeking problem, and the generalized NE seeking problem. Our main contributions are threefold. (i) We consider bilevel VIs with merely monotone and Lipschitz continuous mappings and devise a single-timescale iteratively regularized extragradient method (IR-EG). We improve the existing iteration complexity results for addressing both bilevel VI and VI-constrained convex optimization problems. (ii) Under the strong monotonicity of the outer level mapping, we develop a variant of IR-EG, called R-EG, and derive significantly faster guarantees than those in (i). These results appear to be new for both bilevel VIs and VI-constrained optimization. (iii) To our knowledge, complexity guarantees for computing the optimal NE in nonconvex settings do not exist. Motivated by this lacuna, we consider VI-constrained nonconvex optimization problems and devise an inexactly-projected gradient method, called IPR-EG, where the projection onto the unknown set of equilibria is performed using R-EG with prescribed adaptive termination criterion and regularization parameters. We obtain new complexity guarantees in terms of a residual map and an infeasibility metric for computing a stationary point. We validate the theoretical findings using preliminary numerical experiments for computing the best and the worst Nash equilibria

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice

    Full text link
    As one of the most fundamental concepts in transportation science, Wardrop equilibrium (WE) has always had a relatively weak behavioral underpinning. To strengthen this foundation, one must reckon with bounded rationality in human decision-making processes, such as the lack of accurate information, limited computing power, and sub-optimal choices. This retreat from behavioral perfectionism in the literature, however, was typically accompanied by a conceptual modification of WE. Here we show that giving up perfect rationality need not force a departure from WE. On the contrary, WE can be reached with global stability in a routing game played by boundedly rational travelers. We achieve this result by developing a day-to-day (DTD) dynamical model that mimics how travelers gradually adjust their route valuations, hence choice probabilities, based on past experiences. Our model, called cumulative logit (CULO), resembles the classical DTD models but makes a crucial change: whereas the classical models assume routes are valued based on the cost averaged over historical data, ours values the routes based on the cost accumulated. To describe route choice behaviors, the CULO model only uses two parameters, one accounting for the rate at which the future route cost is discounted in the valuation relative to the past ones and the other describing the sensitivity of route choice probabilities to valuation differences. We prove that the CULO model always converges to WE, regardless of the initial point, as long as the behavioral parameters satisfy certain mild conditions. Our theory thus upholds WE's role as a benchmark in transportation systems analysis. It also resolves the theoretical challenge posed by Harsanyi's instability problem by explaining why equally good routes at WE are selected with different probabilities
    • ā€¦
    corecore