368 research outputs found

    Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    Get PDF
    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors

    A Motion Planner For Robot Manipulators Based on Support Vector Machines

    Get PDF
    ABSTRACT Moving a robot between two configurations without making a collision is of high importance in planning problems. Sampling-based planners have gained popularity due to their acceptable performance in practical situations. This body of work introduces the notion of a risk function that is provided using the Support Vector Machine (SVM) algorithm to find safe configurations in a sampled configuration space. A configuration is called safe if it is placed at maximum dis­tance from surrounding obstacle samples. Compared to previous solutions, this function is less sensitive to a selected sampling method and resolution. The proposed function is first used as a repulsive potential field in a local SVM-based planner. Afterwards, a global planner using the notion of the risk function is suggested to address some of the shortcomings of the suggested local planner. The proposed global planner is able to solve a problem with fewer number of milestones and less number of referrals to the collision detection module in comparison to the classical Probabilistic Roadmap Planner (PRM). The two proposed methods are evaluated in both simulated and experimental environments and the results are reported

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Patient-specific simulation for autonomous surgery

    Get PDF
    An Autonomous Robotic Surgical System (ARSS) has to interact with the complex anatomical environment, which is deforming and whose properties are often uncertain. Within this context, an ARSS can benefit from the availability of patient-specific simulation of the anatomy. For example, simulation can provide a safe and controlled environment for the design, test and validation of the autonomous capabilities. Moreover, it can be used to generate large amounts of patient-specific data that can be exploited to learn models and/or tasks. The aim of this Thesis is to investigate the different ways in which simulation can support an ARSS and to propose solutions to favor its employability in robotic surgery. We first address all the phases needed to create such a simulation, from model choice in the pre-operative phase based on the available knowledge to its intra-operative update to compensate for inaccurate parametrization. We propose to rely on deep neural networks trained with synthetic data both to generate a patient-specific model and to design a strategy to update model parametrization starting directly from intra-operative sensor data. Afterwards, we test how simulation can assist the ARSS, both for task learning and during task execution. We show that simulation can be used to efficiently train approaches that require multiple interactions with the environment, compensating for the riskiness to acquire data from real surgical robotic systems. Finally, we propose a modular framework for autonomous surgery that includes deliberative functions to handle real anatomical environments with uncertain parameters. The integration of a personalized simulation proves fundamental both for optimal task planning and to enhance and monitor real execution. The contributions presented in this Thesis have the potential to introduce significant step changes in the development and actual performance of autonomous robotic surgical systems, making them closer to applicability to real clinical conditions

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Developing Design and Analysis Framework for Hybrid Mechanical-Digital Control of Soft Robots: from Mechanics-Based Motion Sequencing to Physical Reservoir Computing

    Get PDF
    The recent advances in the field of soft robotics have made autonomous soft robots working in unstructured dynamic environments a close reality. These soft robots can potentially collaborate with humans without causing any harm, they can handle fragile objects safely, perform delicate surgeries inside body, etc. In our research we focus on origami based compliant mechanisms, that can be used as soft robotic skeleton. Origami mechanisms are inherently compliant, lightweight, compact, and possess unique mechanical properties such as– multi-stability, nonlinear dynamics, etc. Researchers have shown that multi-stable mechanisms have applications in motion-sequencing applications. Additionally, the nonlinear dynamic properties of origami and other soft, compliant mechanisms are shown to be useful for ‘morphological computation’ in which the body of the robot itself takes part in performing complex computations required for its control. In our research we demonstrate the motion-sequencing capability of multi-stable mechanisms through the example of bistable Kresling origami robot that is capable of peristaltic locomotion. Through careful theoretical analysis and thorough experiments, we show that we can harness multistability embedded in the origami robotic skeleton for generating actuation cycle of a peristaltic-like locomotion gait. The salient feature of this compliant robot is that we need only a single linear actuator to control the total length of the robot, and the snap-through actions generated during this motion autonomously change the individual segment lengths that lead to earthworm-like peristaltic locomotion gait. In effect, the motion-sequencing is hard-coded or embedded in the origami robot skeleton. This approach is expected to reduce the control requirement drastically as the robotic skeleton itself takes part in performing low-level control tasks. The soft robots that work in dynamic environments should be able to sense their surrounding and adapt their behavior autonomously to perform given tasks successfully. Thus, hard-coding a certain behavior as in motion-sequencing is not a viable option anymore. This led us to explore Physical Reservoir Computing (PRC), a computational framework that uses a physical body with nonlinear properties as a ‘dynamic reservoir’ for performing complex computations. The compliant robot ‘trained’ using this framework should be able to sense its surroundings and respond to them autonomously via an extensive network of sensor-actuator network embedded in robotic skeleton. We show for the first time through extensive numerical analysis that origami mechanisms can work as physical reservoirs. We also successfully demonstrate the emulation task using a Miura-ori based reservoir. The results of this work will pave the way for intelligently designed origami-based robots with embodied intelligence. These next generation of soft robots will be able to coordinate and modulate their activities autonomously such as switching locomotion gait and resisting external disturbances while navigating through unstructured environments
    • 

    corecore