40 research outputs found

    Globally Convergent Image Reconstruction for Emission Tomography Using Relaxed Ordered Subsets Algorithms

    Full text link
    We present two types of globally convergent relaxed ordered subsets (OS) algorithms for penalized-likelihood image reconstruction in emission tomography: modified block sequential regularized expectation-maximization (BSREM) and relaxed OS separable paraboloidal surrogates (OS-SPS). The global convergence proof of the existing BSREM (De Pierro and Yamagishi, 2001) required a few a posteriori assumptions. By modifying the scaling functions of BSREM, we are able to prove the convergence of the modified BSREM under realistic assumptions. Our modification also makes stepsize selection more convenient. In addition, we introduce relaxation into the OS-SPS algorithm (Erdogan and Fessler, 1999) that otherwise would converge to a limit cycle. We prove the global convergence of diagonally scaled incremental gradient methods of which the relaxed OS-SPS is a special case; main results of the proofs are from (Nedic and Bertsekas, 2001) and (Correa and Lemarechal, 1993). Simulation results showed that both new algorithms achieve global convergence yet retain the fast initial convergence speed of conventional unrelaxed ordered subsets algorithms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86017/1/Fessler67.pd

    High-Resolution Quantitative Cone-Beam Computed Tomography: Systems, Modeling, and Analysis for Improved Musculoskeletal Imaging

    Get PDF
    This dissertation applies accurate models of imaging physics, new high-resolution imaging hardware, and novel image analysis techniques to benefit quantitative applications of x-ray CT in in vivo assessment of bone health. We pursue three Aims: 1. Characterization of macroscopic joint space morphology, 2. Estimation of bone mineral density (BMD), and 3. Visualization of bone microstructure. This work contributes to the development of extremity cone-beam CT (CBCT), a compact system for musculoskeletal (MSK) imaging. Joint space morphology is characterized by a model which draws an analogy between the bones of a joint and the plates of a capacitor. Virtual electric field lines connecting the two surfaces of the joint are computed as a surrogate measure of joint space width, creating a rich, non-degenerate, adaptive map of the joint space. We showed that by using such maps, a classifier can outperform radiologist measurements at identifying osteoarthritic patients in a set of CBCT scans. Quantitative BMD accuracy is achieved by combining a polyenergetic model-based iterative reconstruction (MBIR) method with fast Monte Carlo (MC) scatter estimation. On a benchtop system emulating extremity CBCT, we validated BMD accuracy and reproducibility via a series of phantom studies involving inserts of known mineral concentrations and a cadaver specimen. High-resolution imaging is achieved using a complementary metal-oxide semiconductor (CMOS)-based x-ray detector featuring small pixel size and low readout noise. A cascaded systems model was used to performed task-based optimization to determine optimal detector scintillator thickness in nominal extremity CBCT imaging conditions. We validated the performance of a prototype scanner incorporating our optimization result. Strong correlation was found between bone microstructure metrics obtained from the prototype scanner and µCT gold standard for trabecular bone samples from a cadaver ulna. Additionally, we devised a multiresolution reconstruction scheme allowing fast MBIR to be applied to large, high-resolution projection data. To model the full scanned volume in the reconstruction forward model, regions outside a finely sampled region-of-interest (ROI) are downsampled, reducing runtime and cutting memory requirements while maintaining image quality in the ROI

    Non-uniform resolution and partial volume recovery in tomographic image reconstruction methods

    Get PDF
    Acquired data in tomographic imaging systems are subject to physical or detector based image degrading effects. These effects need to be considered and modeled in order to optimize resolution recovery. However, accurate modeling of the physics of data and acquisition processes still lead to an ill-posed reconstruction problem, because real data is incomplete and noisy. Real images are always a compromise between resolution and noise; therefore, noise processes also need to be fully considered for optimum bias variance trade off. Image degrading effects and noise are generally modeled in the reconstruction methods, while, statistical iterative methods can better model these effects, with noise processes, as compared to the analytical methods. Regularization is used to condition the problem and explicit regularization methods are considered better to model various noise processes with an extended control over the reconstructed image quality. Emission physics through object distribution properties are modeled in form of a prior function. Smoothing and edge-preserving priors have been investigated in detail and it has been shown that smoothing priors over-smooth images in high count areas and result in spatially non-uniform and nonlinear resolution response. Uniform resolution response is desirable for image comparison and other image processing tasks, such as segmentation and registration. This work proposes methods, based on MRPs in MAP estimators, to obtain images with almost uniform and linear resolution characteristics, using nonlinearity of MRPs as a correction tool. Results indicate that MRPs perform better in terms of response linearity, spatial uniformity and parameter sensitivity, as compared to QPs and TV priors. Hybrid priors, comprised of MRPs and QPs, have been developed and analyzed for their activity recovery performance in two popular PVC methods and for an analysis of list-mode data reconstruction methods showing that MPRs perform better than QPs in different situations
    corecore