27,299 research outputs found

    Field Theory Entropy, the HH-theorem and the Renormalization Group

    Get PDF
    We consider entropy and relative entropy in Field theory and establish relevant monotonicity properties with respect to the couplings. The relative entropy in a field theory with a hierarchy of renormalization group fixed points ranks the fixed points, the lowest relative entropy being assigned to the highest multicritical point. We argue that as a consequence of a generalized HH theorem Wilsonian RG flows induce an increase in entropy and propose the relative entropy as the natural quantity which increases from one fixed point to another in more than two dimensions.Comment: 25 pages, plain TeX (macros included), 6 ps figures. Addition in title. Entropy of cutoff Gaussian model modified in section 4 to avoid a divergence. Therefore, last figure modified. Other minor changes to improve readability. Version to appear in Phys. Rev.

    Electrification in granular gases leads to constrained fractal growth

    Get PDF
    The empirical observation of aggregation of dielectric particles under the influence of electrostatic forces lies at the origin of the theory of electricity. The growth of clusters formed of small grains underpins a range of phenomena from the early stages of planetesimal formation to aerosols. However, the collective effects of Coulomb forces on the nonequilibrium dynamics and aggregation process in a granular gas -- a model representative of the above physical processes -- have so far evaded theoretical scrutiny. Here, we establish a hydrodynamic description of aggregating granular gases that exchange charges upon collisions and interact via the long-ranged Coulomb forces. We analytically derive the governing equations for the evolution of granular temperature, charge variance, and number density for homogeneous and quasi-monodisperse aggregation. We find that, once the aggregates are formed, the system obeys a physical constraint of nearly constant dimensionless ratio of characteristic electrostatic to kinetic energy B(t)≤1\mathcal{B}(t)\le 1. This constraint on the collective evolution of charged clusters is confirmed both by the theory and the detailed molecular dynamics simulations. The inhomogeneous aggregation of monomers and clusters in their mutual electrostatic field proceeds in a fractal manner. Our theoretical framework is extendable to more precise charge exchange mechanism, a current focus of extensive experimentation. Furthermore, it illustrates the collective role of long-ranged interactions in dissipative gases and can lead to novel designing principles in particulate systems

    Non-Sobolev modelling of radiation pressure driven flows in Active Galactic Nuclei

    Full text link
    We present a new general scheme for calculating the structure and dynamics of radiation pressure driven, photoionized flows. The new method goes one step beyond the Sobolev approximation. It involves a numerical solution of the radiative transfer in absorption lines including the effects of differential expansion and line interactions such as line locking and blanketing. We also present a new scheme for calculating the radiation pressure due to trapped line photons in finite, differentially expanding flows. We compare our results for the radiation pressure force with those obtained using the Sobolev approximation and show the limitations of the latter. In particular, we demonstrate that the Sobolev method gives a poor approximation near discontinuity surfaces and its neglect of line blanketing can lead to erroneous results in high velocity flows. We combine the newly calculated radiation pressure force with self-consistent photoionization and thermal calculations to study the dynamics and spectral features of broad absorption line flows and highly ionized gas flows in AGN. A comparison with Sobolev-type calculations shows that the latter over estimates the flow's terminal velocity and, conversely, under estimates its opacity. We also show that line locking on broad emission lines can have a significant effect on the dynamics and spectral features of AGN flows.Comment: 12 pages, 14 figures; includes an erratum on page 12 which corrects an erroneous reference to the work of Elitzur & Ferland (1986
    • …
    corecore