372 research outputs found

    Waveform Relaxation for the Computational Homogenization of Multiscale Magnetoquasistatic Problems

    Full text link
    This paper proposes the application of the waveform relaxation method to the homogenization of multiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton--Raphson scheme. The resolution of many mesoscale problems per Gauss point allows to compute the homogenized constitutive law and its derivative by finite differences. In the proposed approach, the macroscale problem and the mesoscale problems are weakly coupled and solved separately using the finite element method on time intervals for several waveform relaxation iterations. The exchange of information between both problems is still carried out using the heterogeneous multiscale method. However, the partial derivatives can now be evaluated exactly by solving only one mesoscale problem per Gauss point.Comment: submitted to JC

    Monotone iterative methods for solving nonlinear partial differential equations : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Palmerston North, New Zealand

    Get PDF
    A key aspect of the simulation process is the formulation of proper mathematical models. The model must be able to emulate the physical phenomena under investigation. Partial differential equations play a major role in the modelling of many processes which arise in physics, chemistry and engineering. Most of these partial differential equations cannot be solved analytically and classical numerical methods are not always applicable. Thus, efficient and stable numerical approaches are needed. A fruitful method for solving the nonlinear difference schemes, which discretize the continuous problems, is the method of upper and lower solutions and its associated monotone iterations. By using upper and lower solutions as two initial iterations, one can construct two monotone sequences which converge monotonically from above and below to a solution of the problem. This monotone property ensures the theorem on existence and uniqueness of a solution. This method can be applied to a wide number of applied problems such as the enzyme-substrate reaction diffusion models, the chemical reactor models, the logistic model, the reactor dynamics of gasses, the Volterra-Lotka competition models in ecology and the Belousov-Zhabotinskii reaction diffusion models. In this thesis, for solving coupled systems of elliptic and parabolic equations with quasi-monotone reaction functions, we construct and investigate block monotone iterative methods incorporated with Jacobi and Gauss--Seidel methods, based on the method of upper and lower solutions. The idea of these methods is the decomposition technique which reduces a computational domain into a series of nonoverlapping one dimensional intervals by slicing the domain into a finite number of thin strips, and then solving a two-point boundary-value problem for each strip by a standard computational method such as the Thomas algorithm. We construct block monotone Jacobi and Gauss-Seidel iterative methods with quasi-monotone reaction functions and investigate their monotone properties. We prove theorems on existence and uniqueness of a solution, based on the monotone properties of iterative sequences. Comparison theorems on the rate of convergence for the block Jacobi and Gauss-Seidel methods are presented. We prove that the numerical solutions converge to the unique solutions of the corresponding continuous problems. We estimate the errors between the numerical and exact solutions of the nonlinear difference schemes, and the errors between the numerical solutions and the exact solutions of the corresponding continuous problems. The methods of construction of initial upper and lower solutions to start the block monotone iterative methods are given

    Optimal Control of Convective FitzHugh-Nagumo Equation

    Get PDF
    We investigate smooth and sparse optimal control problems for convective FitzHugh-Nagumo equation with travelling wave solutions in moving excitable media. The cost function includes distributed space-time and terminal observations or targets. The state and adjoint equations are discretized in space by symmetric interior point Galerkin (SIPG) method and by backward Euler method in time. Several numerical results are presented for the control of the travelling waves. We also show numerically the validity of the second order optimality conditions for the local solutions of the sparse optimal control problem for vanishing Tikhonov regularization parameter. Further, we estimate the distance between the discrete control and associated local optima numerically by the help of the perturbation method and the smallest eigenvalue of the reduced Hessian

    A distributed primal-dual interior-point method for loosely coupled problems using ADMM

    Full text link
    In this paper we propose an efficient distributed algorithm for solving loosely coupled convex optimization problems. The algorithm is based on a primal-dual interior-point method in which we use the alternating direction method of multipliers (ADMM) to compute the primal-dual directions at each iteration of the method. This enables us to join the exceptional convergence properties of primal-dual interior-point methods with the remarkable parallelizability of ADMM. The resulting algorithm has superior computational properties with respect to ADMM directly applied to our problem. The amount of computations that needs to be conducted by each computing agent is far less. In particular, the updates for all variables can be expressed in closed form, irrespective of the type of optimization problem. The most expensive computational burden of the algorithm occur in the updates of the primal variables and can be precomputed in each iteration of the interior-point method. We verify and compare our method to ADMM in numerical experiments.Comment: extended version, 50 pages, 9 figure

    Multiscale Finite Element Modeling of Nonlinear Magnetoquasistatic Problems Using Magnetic Induction Conforming Formulations

    Full text link
    In this paper we develop magnetic induction conforming multiscale formulations for magnetoquasistatic problems involving periodic materials. The formulations are derived using the periodic homogenization theory and applied within a heterogeneous multiscale approach. Therefore the fine-scale problem is replaced by a macroscale problem defined on a coarse mesh that covers the entire domain and many mesoscale problems defined on finely-meshed small areas around some points of interest of the macroscale mesh (e.g. numerical quadrature points). The exchange of information between these macro and meso problems is thoroughly explained in this paper. For the sake of validation, we consider a two-dimensional geometry of an idealized periodic soft magnetic composite.Comment: Paper accepted for publication in the SIAM MMS journa
    corecore