28 research outputs found

    Alternative methods of investigating the time dependent M/G/k queue

    Get PDF
    Thesis. 1976. M.S.--Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.Microfiche copy available in Archives and Aero.Bibliograpy: leaf 154.by Peeter A. Kivestu.M.S

    Optimization of energy efficiency in data and WEB hosting centers

    Get PDF
    Mención Internacional en el título de doctorThis thesis tackles the optimization of energy efficiency in data centers in terms of network and server utilization. For what concerns networking utilization the work focuses on Energy Efficient Ethernet (EEE) - IEEE 802.3az standard - which is the energy-aware alternative to legacy Ethernet, and an important component of current and future green data centers. More specifically the first contribution of this thesis consists in deriving and analytical model of gigabit EEE links with coalescing using M/G/1 queues with sleep and wake-up periods. Packet coalescing has been proposed to save energy by extending the sojourn in the Low Power Idle state of EEE. The model presented in this thesis approximates with a good accuracy both the energy saving and the average packet delay by using a few significant traffic descriptors. While coalescing improves by far the energy efficiency of EEE, it is still far from achieving energy consumption proportional to traffic. Moreover, coalescing can introduce high delays. To this extend, by using sensitivity analysis the thesis evaluates the impact of coalescing timers and buffer sizes, and sheds light on the delay incurred by adopting coalescing schemes. Accordingly, the design and study of a first family of dynamic algorithms, namely measurement-based coalescing control (MBCC), is proposed. MBCC schemes tune the coalescing parameters on-the-fly, according to the instantaneous load and the coalescing delay experienced by the packets. The thesis also discusses a second family of dynamic algorithms, namely NT-policy coalescing control (NTCC), that adjusts the coalescing parameters based on the sole occurrence of timeouts and buffer fill-ups. Furthermore, the performance of static as well as dynamic coalescing schemes is investigated using real traffic traces. The results reported in this work show that, by relying on run-time delay measurements, simple and practical MBCC adaptive coalescing schemes outperform traditional static and dynamic coalescing while the adoption of NTCC coalescing schemes has practically no advantages with respect to static coalescing when delay guarantees have to be provided. Notably, MBCC schemes double the energy saving benefit of legacy EEE coalescing and allow to control the coalescing delay. For what concerns server utilization, the thesis presents an exhaustive empirical characterization of the power requirements of multiple components of data center servers. The characterization is the second key contribution of this thesis, and is achieved by devising different experiments to stress server components, taking into account the multiple available CPU frequencies and the presence of multicore servers. The described experiments, allow to measure energy consumption of server components and identify their optimal operational points. The study proves that the curve defining the minimal CPU power utilization, as a function of the load expressed in Active Cycles Per Second, is neither concave nor purely convex. Instead, it definitively shows a superlinear dependence on the load. The results illustrate how to improve the efficiency of network cards and disks. Finally, the accuracy of the model derived from the server components consumption characterization is validated by comparing the real energy consumed by two Hadoop applications - PageRank and WordCount - with the estimation from the model, obtaining errors below 4:1%, on average.This work has been partially supported by IMDEA Networks Institute and the Greek State Scholarships FoundationPrograma Oficial de Doctorado en Ingeniería TelemáticaPresidente: Marco Giuseppe Ajmone Marsan.- Secretario: Jose Luis Ayala Rodrigo.- Vocal: Gianluca Antonio Rizz

    Production-inventory control models: approximations and algorithms

    Get PDF

    Monitoring and control of stochastic systems

    Get PDF

    Improved learning automata applied to routing in multi-service networks

    Get PDF
    Multi-service communications networks are generally designed, provisioned and configured, based on source-destination user demands expected to occur over a recurring time period. However due to network users' actions being non-deterministic, actual user demands will vary from those expected, potentially causing some network resources to be under- provisioned, with others possibly over-provisioned. As actual user demands vary over the recurring time period from those expected, so the status of the various shared network resources may also vary. This high degree of uncertainty necessitates using adaptive resource allocation mechanisms to share the finite network resources more efficiently so that more of actual user demands may be accommodated onto the network. The overhead for these adaptive resource allocation mechanisms must be low in order to scale for use in large networks carrying many source-destination user demands. This thesis examines the use of stochastic learning automata for the adaptive routing problem (these being adaptive, distributed and simple in implementation and operation) and seeks to improve their weakness of slow convergence whilst maintaining their strength of subsequent near optimal performance. Firstly, current reinforcement algorithms (the part causing the automaton to learn) are examined for applicability, and contrary to the literature the discretised schemes are found in general to be unsuitable. Two algorithms are chosen (one with fast convergence, the other with good subsequent performance) and are improved through automatically adapting the learning rates and automatically switching between the two algorithms. Both novel methods use local entropy of action probabilities for determining convergence state. However when the convergence speed and blocking probability is compared to a bandwidth-based dynamic link-state shortest-path algorithm, the latter is found to be superior. A novel re-application of learning automata to the routing problem is therefore proposed: using link utilisation levels instead of call acceptance or packet delay. Learning automata now return a lower blocking probability than the dynamic shortest-path based scheme under realistic loading levels, but still suffer from a significant number of convergence iterations. Therefore the final improvement is to combine both learning automata and shortest-path concepts to form a hybrid algorithm. The resulting blocking probability of this novel routing algorithm is superior to either algorithm, even when using trend user demands
    corecore