408 research outputs found

    Formulas vs. Circuits for Small Distance Connectivity

    Full text link
    We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance k(n)k(n) Connectivity, which asks whether two specified nodes in a graph of size nn are connected by a path of length at most k(n)k(n). This problem is solvable (by the recursive doubling technique) on {\bf circuits} of depth O(logk)O(\log k) and size O(kn3)O(kn^3). In contrast, we show that solving this problem on {\bf formulas} of depth logn/(loglogn)O(1)\log n/(\log\log n)^{O(1)} requires size nΩ(logk)n^{\Omega(\log k)} for all k(n)loglognk(n) \leq \log\log n. As corollaries: (i) It follows that polynomial-size circuits for Distance k(n)k(n) Connectivity require depth Ω(logk)\Omega(\log k) for all k(n)loglognk(n) \leq \log\log n. This matches the upper bound from recursive doubling and improves a previous Ω(loglogk)\Omega(\log\log k) lower bound of Beame, Pitassi and Impagliazzo [BIP98]. (ii) We get a tight lower bound of sΩ(d)s^{\Omega(d)} on the size required to simulate size-ss depth-dd circuits by depth-dd formulas for all s(n)=nO(1)s(n) = n^{O(1)} and d(n)logloglognd(n) \leq \log\log\log n. No lower bound better than sΩ(1)s^{\Omega(1)} was previously known for any d(n)O(1)d(n) \nleq O(1). Our proof technique is centered on a new notion of pathset complexity, which roughly speaking measures the minimum cost of constructing a set of (partial) paths in a universe of size nn via the operations of union and relational join, subject to certain density constraints. Half of our proof shows that bounded-depth formulas solving Distance k(n)k(n) Connectivity imply upper bounds on pathset complexity. The other half is a combinatorial lower bound on pathset complexity

    On the Succinctness of Query Rewriting over OWL 2 QL Ontologies with Shallow Chases

    Full text link
    We investigate the size of first-order rewritings of conjunctive queries over OWL 2 QL ontologies of depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and negative results are obtained. Conjunctive queries over ontologies of depth 1 have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however, in the worst case, positive existential rewritings can only be of superpolynomial size. Positive existential and nonrecursive datalog rewritings of queries over ontologies of depth 2 suffer an exponential blowup in the worst case, while first-order rewritings are superpolynomial unless NPP/poly\text{NP} \subseteq \text{P}/\text{poly}. We also analyse rewritings of tree-shaped queries over arbitrary ontologies and observe that the query entailment problem for such queries is fixed-parameter tractable

    Constant-Depth Circuits vs. Monotone Circuits

    Get PDF

    Lower Bounds for DeMorgan Circuits of Bounded Negation Width

    Get PDF
    We consider Boolean circuits over {or, and, neg} with negations applied only to input variables. To measure the "amount of negation" in such circuits, we introduce the concept of their "negation width". In particular, a circuit computing a monotone Boolean function f(x_1,...,x_n) has negation width w if no nonzero term produced (purely syntactically) by the circuit contains more than w distinct negated variables. Circuits of negation width w=0 are equivalent to monotone Boolean circuits, while those of negation width w=n have no restrictions. Our motivation is that already circuits of moderate negation width w=n^{epsilon} for an arbitrarily small constant epsilon>0 can be even exponentially stronger than monotone circuits. We show that the size of any circuit of negation width w computing f is roughly at least the minimum size of a monotone circuit computing f divided by K=min{w^m,m^w}, where m is the maximum length of a prime implicant of f. We also show that the depth of any circuit of negation width w computing f is roughly at least the minimum depth of a monotone circuit computing f minus log K. Finally, we show that formulas of bounded negation width can be balanced to achieve a logarithmic (in their size) depth without increasing their negation width

    A feasible interpolation for random resolution

    Full text link
    Random resolution, defined by Buss, Kolodziejczyk and Thapen (JSL, 2014), is a sound propositional proof system that extends the resolution proof system by the possibility to augment any set of initial clauses by a set of randomly chosen clauses (modulo a technical condition). We show how to apply the general feasible interpolation theorem for semantic derivations of Krajicek (JSL, 1997) to random resolution. As a consequence we get a lower bound for random resolution refutations of the clique-coloring formulas.Comment: Preprint April 2016, revised September and October 201

    Circuit Complexity Meets Ontology-Based Data Access

    Full text link
    Ontology-based data access is an approach to organizing access to a database augmented with a logical theory. In this approach query answering proceeds through a reformulation of a given query into a new one which can be answered without any use of theory. Thus the problem reduces to the standard database setting. However, the size of the query may increase substantially during the reformulation. In this survey we review a recently developed framework on proving lower and upper bounds on the size of this reformulation by employing methods and results from Boolean circuit complexity.Comment: To appear in proceedings of CSR 2015, LNCS 9139, Springe
    corecore