697 research outputs found

    The 2018 GaN Power Electronics Roadmap

    Get PDF
    Gallium nitride (GaN) is a compound semiconductor that has tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here

    Microwave class-E power amplifiers: a brief review of essential concepts in high-frequency class-E PAs and related circuits

    Get PDF
    Since Nathan Sokal's invention of the class-E power amplifier (PA), the vast majority of class-E results have been reported at kilohertz and millihertz frequencies, but the concept is increasingly applied in the ultrahigh-frequency (UHF) [1]-[13], microwave [14]-[20], and even millimeter-wave range [21]. The goal of this article is to briefly review some interesting concepts concerning high-frequency class-E PAs and related circuits. (The article on page 26 of this issue, "A History of Switching-Mode Class-E Techniques" by Andrei Grebennikov and Frederick H. Raab, provides a historical overview of class-E amplifier development.)We acknowledge support, in part, by a Lockheed Martin Endowed Chair at the University of Colorado and in part by the Spanish Ministry of Economy, Industry, and Competitiveness (MINECO) through TEC2014-58341-C4-1-R and TEC2017-83343-C4-1-R projects, cofunded with FEDER

    Power electronics based on wide-bandgap semiconductors: opportunities and challenges

    Get PDF
    The expansion of the electric vehicle market is driving the request for efficient and reliable power electronic systems for electric energy conversion and processing. The efficiency, size, and cost of a power system is strongly related to the performance of power semiconductor devices, where massive industrial investments and intense research efforts are being devoted to new wide bandgap (WBG) semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN). The electrical and thermal properties of SiC and GaN enable the fabrication of semiconductor power devices with performance well beyond the limits of silicon. However, a massive migration of the power electronics industry towards WBG materials can be obtained only once the corresponding fabrication technology reaches a sufficient maturity and a competitive cost. In this paper, we present a perspective of power electronics based on WBG semiconductors, from fundamental material characteristics of SiC and GaN to their potential impacts on the power semiconductor device market. Some application cases are also presented, with specific benchmarks against a corresponding implementation realized with silicon devices, focusing on both achievable performance and system cost

    Gallium Nitride Converters for Spacecraft Applications

    Get PDF
    This work presents the development and evaluation of several Point-of-Load (PoL) Gallium Nitride (GaN) high electron mobility transistors (HEMTs) based synchronous buck converters for computational loads in small spacecraft applications. Design modifications to existing controllers and PCB layout is discussed to maximize the benefits of GaN for these converters. The radiation performance of these converters and in-situ measurements is presented. This work also presents the development of a modular power system architecture for 1U CubeSat compute boards including the electrical and grounding layout, mechanical interface, and size layout. The PoL converter is based on the synchronous buck topology utilizing the Linear Technologies LTC3833 and the Texas Instruments LM25141-Q1 controllers and the EPC 2014C, EPC 2015C, Teledyne TDG100E15B, and GaN Systems GS61004B GaN HEMTs. GaN devices are not only attractive to power electronics engineers in general due to their wide bandgap, low gate capacitance, and low on resistance they also show very promising performance in high radiation environments without the need for expensive radiation-hardened design. Several converters utilizing both commercial-off-the-shelf products and radiation hardened devices were developed and compared to the GaN converters to allow for a comparison between all devices to evaluate the performance of these new devices

    Doctor of Philosophy

    Get PDF
    dissertationMicroelectromechanical systems (MEMS) resonators on Si have the potential to replace the discrete passive components in a power converter. The main intention of this dissertation is to present a ring-shaped aluminum nitride (AlN) piezoelectric microreson

    Improved Accuracy Area Efficient Hybrid CMOS/GaN DC-DC Buck Converterfor High Step-Down Ratio Applications

    Get PDF
    abstract: Point of Load (POL) DC-DC converters are increasingly used in space applications, data centres, electric vehicles, portable computers and devices and medical electronics. Heavy computing and processing capabilities of the modern devices have ushered the use of higher battery supply voltage to increase power storage. The need to address this consumer experience driven requirement has propelled the evolution of the next generation of small form-factor power converters which can operate with higher step down ratios while supplying heavy continuous load currents without sacrificing efficiency. Constant On-Time (COT) converter topology is capable of achieving stable operation at high conversion ratio with minimum off-chip components and small silicon area. This work proposes a Constant On-Time buck dc-dc converter for a wide dynamic input range and load currents from 100mA to 10A. Accuracy of this ripple based converter is improved by a unique voltage positioning technique which modulates the reference voltage to lower the average ripple profile close to the nominal output. Adaptive On-time block features a transient enhancement scheme to assist in faster voltage droop recovery when the output voltage dips below a defined threshold. UtilizingGallium Nitride (GaN) power switches enable the proposed converter to achieve very high efficiency while using smaller size inductor-capacitor (LC) power-stage. Use of novel Superjunction devices with higher drain-source blocking voltage simplifies the complex driver design and enables faster frequency of operation. It allows 1.8VComplementary Metal-Oxide Semiconductor (CMOS) devices to effectively drive GaNpower FETs which require 5V gate signal swing. The presented controller circuit uses internal ripple generation which reduces reliance on output cap equivalent series resistance (ESR) for loop stability and facilitates ripples reduction at the output. The ripple generation network is designed to provide ai optimally stable performance while maintaining load regulation and line regulation accuracy withing specified margin. The chip with ts external Power FET package is proposed to be integrated on a printed circuit board for testing. The designed power converter is expected to operate under 200 MRad of a total ionising dose of radiation enabling it to function within large hadron collider at CERN and space satellite and probe missions.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Monolithic Bidirectional Switch Based on GaN Gate Injection Transistors

    Get PDF
    The paper deals with a bi-directional switch based on N-channel enhancement-mode GaN FET. The proposed device is a Gate Injection Transistor monolithic solution to reduce the volume of the switch with high current density and blocking voltage of 600V. It features a dual-gate control pin and two power terminal. In the paper, the main characteristics of the bi-directional switch and the performance in the four-quadrant of operation are examined and discussed. The device characteristics are compared with the traditional MOSFET and IGBT solutions. The gate driver design issues are considered to optimize the switching transient of the GaN-based switch. Finally, an experimental evaluation of the GaN FET as the bidirectional circuit breaker is carried out in an AC power supply system to validate the effectiveness of the proposed monolithic new device

    Class-E rectifiers and power converters: the operation of the class-E topology as a power amplifier and a rectifier with very high conversion efficiencies

    Get PDF
    In the late 70’s, the interest in reducing the value and size of reactive components moved power supply specialists to operate dc-to-dc converters at hundreds of kHz or even MHz frequencies. Passive energy storage (mainly magnetics) dominates the size of power electronics, limiting also its cost, reliability and dynamic response. Motivated by miniaturization and improved control bandwidth, they had to face the frequency-dependent turn-on and turn-off losses associated with the use of rectangular waveforms in the hard-switched topologies of that time. Similar to approaches for RF/microwave power amplifiers (PAs), the introduction of resonant circuits allowed shaping either a sinusoidal voltage or current, with parasitic reactive elements absorbed by the topology in the neighborhood of the switching frequency. The resulting resonant power converters, obtained by cascading a dc-to-ac resonant inverter with a high-frequency ac-to-dc rectifier, first transform the dc input power into controlled ac power, and then convert it back into the desired dc output [1]. This paper provides some historic notes on the operation of the class-E topology, introduced worldwide to the RF/microwave community by Nathan O. Sokal [2], as a power inverter and as a rectifier, with very high conversion efficiencies up to microwave frequencies. Recent research advances and implementations of class-E rectifiers and dc-to-dc converters at UHF and beyond are included. Offering competitive performance in terms of efficiency for RF power recovery, together with a wide bandwidth for low-loss power conversion, their potential for some modern applications is highlighted.The authors would like to acknowledge support in part by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) through TEC2014-58341-C4-1-R and TEC2017-83343-C4-1-R projects, co-funded with FEDER, and in part by Lockheed Martin Endowed Chair at the University of Colorado

    The 2018 GaN power electronics roadmap

    Get PDF
    GaN is a compound semiconductor that has a tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here
    • 

    corecore