22 research outputs found

    Human heart heterogeneity and its role in the onset and perpetuation of cardiac arrhythmias

    Get PDF

    Simulating the Effect of Global Cardiac Ischaemia on the Dynamics of Ventricular Arrhythmias in the Human Heart

    Get PDF
    Cardiac arrhythmias are significant causes of death in the world, and ventricular fibrillation is a very dangerous type of cardiac arrhythmia. Global myocardial ischemia is a consequence of ventricular fibrillation (VF) and has been shown to change the dynamic behaviour of activation waves on the heart. The aim of this thesis is to use computational models to study the behaviour of re-entry in the human ventricles when the heart becomes globally ischaemic. The effects of two ischaemic components (hyperkalaemia and hypoxia) on spiral wave re-entry behaviour in two dimensional (2D) ventricular tissue using two ventricular action potential (AP) models were simulated (Ten Tusscher et al. 2006 (TP06) and O鈥橦ara et al. 2011 (ORd)). A three dimensional (3D) model of the human ventricles is used to examine the influence of each ischaemic component on the stability of ventricular fibrillation. Firstly, the main ventricular AP models relevant to this thesis are reviewed. Then, the current-voltage properties of four different IK(ATP) formulations are examined to assess which formulation was more appropriate to simulate hypoxia/ischaemia. Secondly, how the formulation of IK(ATP) influences cell excitability and AP duration (APD) in models of human ventricular myocytes is studied. Finally, mechanisms underlying ventricular arrhythmia generation under the conditions of ischaemia are investigated

    Three-dimensional Multiscale Modelling and Simulation of Atria and Torso Electrophysiology

    Full text link
    A better understanding of the electrical activity of the heart under physiological and pathological conditions has always been key for clinicians and researchers. Over the last years, the information in the P-wave signals has been extensively analysed to un-cover the mechanisms underlying atrial arrhythmias by localizing ectopic foci or high-frequency rotors. However, the relationship between the activation of the different areas of the atria and the characteristics of the P-wave signals or body surface poten-tial maps are still far from being completely understood. Multiscale anatomical and functional models of the heart are a new technological framework that can enable the investigation of the heart as a complex system. This thesis is centred in the construction of a multiscale framework that allows the realistic simulation of atrial and torso electrophysiology and integrates all the anatom-ical and functional descriptions described in the literature. The construction of such model involves the development of heterogeneous cellular and tissue electrophysiolo-gy models fitted to empirical data. It also requires an accurate 3D representation of the atrial anatomy, including tissue fibre arrangement, and preferential conduction axes. This multiscale model aims to reproduce faithfully the activation of the atria under physiological and pathological conditions. We use the model for two main applica-tions. First, to study the relationship between atrial activation and surface signals in sinus rhythm. This study should reveal the best places for recording P-waves signals in the torso, and which are the regions of the atria that make the most significant contri-bution to the body surface potential maps and determine the main P-wave characteris-tics. Second, to spatially cluster and classify ectopic atrial foci into clearly differenti-ated atrial regions by using the body surface P-wave integral map (BSPiM) as a bi-omarker. We develop a machine-learning pipeline trained from simulations obtained from the atria-torso model aiming to validate whether ectopic foci with similar BSPiM naturally cluster into differentiated non-intersected atrial regions, and whether new BSPiM could be correctly classified with high accuracy.En la actualidad, una mejor compresi贸n de la actividad el茅ctrica del coraz贸n en condi-ciones fisiol贸gicas y patol贸gicas es clave para m茅dicos e investigadores. A lo largo de los 煤ltimos a帽os, la informaci贸n derivada de la onda P se ha utilizado para intentar descubrir los mecanismos subyacentes a las arritmias auriculares mediante la localiza-ci贸n de focos ect贸picos y rotores de alta frecuencia. Sin embargo, la relaci贸n entre la activaci贸n de distintas regiones auriculares y las caracter铆sticas tanto de las ondas P como de la distribuci贸n de potencial en la superficie del torso est谩 lejos de entenderse completamente. Los modelos card铆acos funcionales y anat贸micos son una nueva he-rramienta que puede facilitar la investigaci贸n relativa al coraz贸n entendido como sis-tema complejo. La presente tesis se centra en la construcci贸n de un modelo multiescala para la simula-ci贸n realista de la electrofisiolog铆a card铆aca tanto a nivel auricular como de torso, integrando toda la informaci贸n anat贸mica y funcional disponible en la literatura. La construcci贸n de este modelo implica el desarrollo, en base a datos experimentales, de modelos electrofisiol贸gicos heterog茅neos tanto celulares como tisulares. As铆 mismo, es imprescindible una representaci贸n tridimensional precisa de la anatom铆a auricular, incluyendo la direcci贸n de fibras y los haces de conducci贸n preferentes. Este modelo multiescala busca reproducir fielmente la activaci贸n auricular en condiciones fisiol贸gi-cas y patol贸gicas. Su uso se ha centrado fundamentalmente en dos aplicaciones. En primer lugar, estudiar la relaci贸n entre la activaci贸n auricular en ritmo sinusal y las se帽ales en la superficie del torso. Este estudio busca definir la mejor ubicaci贸n para el registro de las ondas P en el torso as铆 como determinar aquellas regiones auriculares que contribuyen fundamentalmente a la formaci贸n y distribuci贸n de potenciales super-ficiales as铆 como a las caracter铆sticas de las ondas P. En segundo lugar, agrupar y cla-sificar espacialmente los focos ect贸picos en regiones auriculares claramente diferen-ciables empleando como biomarcador los mapas superficiales de integral de la onda P (BSPiM). Se ha desarrollado para ello una metodolog铆a de aprendizaje autom谩tico en la que las simulaciones obtenidas con el modelo multiescala aur铆cula-torso sirven de entrenamiento, permitiendo validar si los focos ect贸picos cuyos BSPiMs son similares se agrupan de forma natural en regiones auriculares no intersectadas y si BSPiMs nue-vos podr铆an ser clasificados prospectivamente con gran precisi贸n.Avui en dia, una millor comprenssi贸 de l'activitat el猫ctrica del cor en condicions fisio-l貌giques i patol貌giques 茅s clau per a metges i investigadors. Al llarg dels 煤ltims anys, la informaci贸 derivada de l'ona P s'ha utilitzat per intentar descobrir els mecanismes subjacents a les ar铆tmies auriculars mitjan莽ant la localitzaci贸 de focus ect貌pics i rotors d'alta freq眉猫ncia. No obstant aix貌, la relaci贸 entre l'activaci贸 de diferents regions auri-culars i les caracter铆stiques tant de les ones P com de la distribuci贸 de potencial en la superf铆cie del tors est脿 lluny d'entendre's completament. Els models card铆acs funcionals i anat貌mics s贸n una nova eina que pot facilitar la recerca relativa al cor ent猫s com a sistema complex. La present tesi es centra en la construcci贸 d'un model multiescala per a la simulaci贸 realista de la electrofisiologia card铆aca tant a nivell auricular com de tors, integrant tota la informaci贸 anat貌mica i funcional disponible en la literatura. La construcci贸 d'aquest model implica el desenvolupament, sobre la base de dades experimentals, de models electrofisiol貌gics heterogenis, tant cel路lulars com tissulars. Aix铆 mateix, 茅s imprescindible una representaci贸 tridimensional precisa de l'anatomia auricular, in-cloent la direcci贸 de fibres i els feixos de conducci贸 preferents. Aquest model multies-cala busca reproduir fidelment l'activaci贸 auricular en condicions fisiol貌giques i pa-tol貌giques. El seu 煤s s'ha centrat fonamentalment en dues aplicacions. En primer lloc, estudiar la relaci贸 entre l'activaci贸 auricular en ritme sinusal i els senyals en la superf铆-cie del tors. A m茅s a m茅s, amb aquest estudi tamb茅 es busca definir la millor ubicaci贸 per al registre de les ones P en el tors, aix铆 com, determinar aquelles regions auriculars que contribueixen fonamentalment a la formaci贸 i distribuci贸 de potencials superfi-cials a l'hora que es caracteritzen les ones P. En segon lloc, agrupar i classificar espa-cialment els focus ect貌pics en regions auriculars clarament diferenciables emprant com a biomarcador els mapes superficials d'integral de l'ona P (BSPiM). 脡s per aix貌 que s'ha desenvolupat una metodologia d'aprenentatge autom脿tic en la qual les simulacions obtingudes amb el model multiescala aur铆cula-tors serveixen d'entrenament, la qual cosa permet validar si els focus ect貌pics, llurs BSPiMs s贸n similars, s'agrupen de for-ma natural en regions auriculars no intersectades i si BSPiMs nous podrien ser classifi-cats de manera prospectiva amb precisi贸.Ferrer Albero, A. (2017). Three-dimensional Multiscale Modelling and Simulation of Atria and Torso Electrophysiology [Tesis doctoral no publicada]. Universitat Polit猫cnica de Val猫ncia. https://doi.org/10.4995/Thesis/10251/88402TESI

    Electrical stimulation of the human left ventricle

    Get PDF
    corecore