27 research outputs found

    Visual control of multi-rotor UAVs

    Get PDF
    Recent miniaturization of computer hardware, MEMs sensors, and high energy density batteries have enabled highly capable mobile robots to become available at low cost. This has driven the rapid expansion of interest in multi-rotor unmanned aerial vehicles. Another area which has expanded simultaneously is small powerful computers, in the form of smartphones, which nearly always have a camera attached, many of which now contain a OpenCL compatible graphics processing units. By combining the results of those two developments a low-cost multi-rotor UAV can be produced with a low-power onboard computer capable of real-time computer vision. The system should also use general purpose computer vision software to facilitate a variety of experiments. To demonstrate this I have built a quadrotor UAV based on control hardware from the Pixhawk project, and paired it with an ARM based single board computer, similar those in high-end smartphones. The quadrotor weights 980 g and has a flight time of 10 minutes. The onboard computer capable of running a pose estimation algorithm above the 10 Hz requirement for stable visual control of a quadrotor. A feature tracking algorithm was developed for efficient pose estimation, which relaxed the requirement for outlier rejection during matching. Compared with a RANSAC- only algorithm the pose estimates were less variable with a Z-axis standard deviation 0.2 cm compared with 2.4 cm for RANSAC. Processing time per frame was also faster with tracking, with 95 % confidence that tracking would process the frame within 50 ms, while for RANSAC the 95 % confidence time was 73 ms. The onboard computer ran the algorithm with a total system load of less than 25 %. All computer vision software uses the OpenCV library for common computer vision algorithms, fulfilling the requirement for running general purpose software. The tracking algorithm was used to demonstrate the capability of the system by per- forming visual servoing of the quadrotor (after manual takeoff). Response to external perturbations was poor however, requiring manual intervention to avoid crashing. This was due to poor visual controller tuning, and to variations in image acquisition and attitude estimate timing due to using free running image acquisition. The system, and the tracking algorithm, serve as proof of concept that visual control of a quadrotor is possible using small low-power computers and general purpose computer vision software

    Vision systems for autonomous aircraft guidance

    Get PDF

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones
    corecore