165 research outputs found

    Prior Knowledge Based Motion Model Representation

    Get PDF
    This paper presents a new approach for human walking modeling from monocular image sequences. A kinematics model and a walking motion model are introduced in order to exploit prior knowledge. The proposed technique consists of two steps. Initially, an efficient feature point selection and tracking approach is used to compute feature points' trajectories. Peaks and valleys of these trajectories are used to detect key frames-frames where both legs are in contact with the floor. Secondly, motion models associated with each joint are locally tuned by using those key frames. Differently than previous approaches, this tuning process is not performed at every frame, reducing CPU time. In addition, the movement's frequency is defined by the elapsed time between two consecutive key frames, which allows handling walking displacement at different speed. Experimental results with different video sequences are presented

    Estimating 2D Upper Body Poses from Monocular Images

    Get PDF
    Automatic estimation and recognition of poses from video allows for a whole range of applications. The research described here is an important step towards automatic extraction of 3D poses. We describe our research to extract the 2D joint locations of the people in meeting videos. The key point of the research described here is that we generalize over variations in appearance of both people and scene. This results in a robust detection of 2D joint locations. For the detection of different limbs, we employ a number of limb locators. Each of these uses a different set of image features. We evaluate our work on two videos that have been recorded in the meeting context. Our results are promising, yielding an average error of approximately 3-5 cm per joint

    Artificial Intelligence in the Creative Industries: A Review

    Full text link
    This paper reviews the current state of the art in Artificial Intelligence (AI) technologies and applications in the context of the creative industries. A brief background of AI, and specifically Machine Learning (ML) algorithms, is provided including Convolutional Neural Network (CNNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs) and Deep Reinforcement Learning (DRL). We categorise creative applications into five groups related to how AI technologies are used: i) content creation, ii) information analysis, iii) content enhancement and post production workflows, iv) information extraction and enhancement, and v) data compression. We critically examine the successes and limitations of this rapidly advancing technology in each of these areas. We further differentiate between the use of AI as a creative tool and its potential as a creator in its own right. We foresee that, in the near future, machine learning-based AI will be adopted widely as a tool or collaborative assistant for creativity. In contrast, we observe that the successes of machine learning in domains with fewer constraints, where AI is the `creator', remain modest. The potential of AI (or its developers) to win awards for its original creations in competition with human creatives is also limited, based on contemporary technologies. We therefore conclude that, in the context of creative industries, maximum benefit from AI will be derived where its focus is human centric -- where it is designed to augment, rather than replace, human creativity

    Augmented reality and scene examination

    Get PDF
    The research presented in this thesis explores the impact of Augmented Reality on human performance, and compares this technology with Virtual Reality using a head-mounted video-feed for a variety of tasks that relate to scene examination. The motivation for the work was the question of whether Augmented Reality could provide a vehicle for training in crime scene investigation. The Augmented Reality application was developed using fiducial markers in the Windows Presentation Foundation, running on a wearable computer platform; Virtual Reality was developed using the Crytek game engine to present a photo-realistic 3D environment; and a video-feed was provided through head-mounted webcam. All media were presented through head-mounted displays of similar resolution to provide the sole source of visual information to participants in the experiments. The experiments were designed to increase the amount of mobility required to conduct the search task, i.e., from rotation in the horizontal or vertical plane through to movement around a room. In each experiment, participants were required to find objects and subsequently recall their location. It is concluded that human performance is affected not merely via the medium through which the world is perceived but moreover, the constraints governing how movement in the world is controlled

    3D Human Pose and Shape Estimation Based on Parametric Model and Deep Learning

    Get PDF
    3D human body reconstruction from monocular images has wide applications in our life, such as movie, animation, Virtual/Augmented Reality, medical research and so on. Due to the high freedom of human body in real scene and the ambiguity of inferring 3D objects from 2D images, it is a challenging task to accurately recover 3D human body models from images. In this thesis, we explore the methods for estimating 3D human body models from images based on parametric model and deep learning.In the first part, the coarse 3D human body models are estimated automatically from multi-view images based on a parametric human body model called SMPL model. Two routes are exploited for estimating the pose and shape parameters of the SMPL model to obtain the 3D models: (1) Optimization based methods; and (2) Deep learning based methods. For the optimization based methods, we propose the novel energy functions based on some prior information including the 2D joint points and silhouettes. Through minimizing the energy functions, the SMPL model is fitted to the prior information, and then, the coarse 3D human body is obtained. In addition to the traditional optimization based methods, a deep learning based method is also proposed in the following work to regress the pose and shape parameters of the SMPL model. A novel architecture is proposed to put the optimization into a training loop of convolutional neural network (CNN) to form a self-supervision structure based on the multi-view images. The proposed methods are evaluated on both synthetic and real datasets to demonstrate that they can obtain better estimation of the pose and shape of 3D human body than previous approaches.In the second part, the problem is shifted to the detailed 3D human body reconstruction from multi-view images. Instead of using the SMPL model, implicit function is utilized to represent 3D models because implicit representation can generate continuous surface and has better flexibility for arbitrary topology. Firstly, a multi-scale features based method is proposed to learn the implicit representation for 3D models through multi-stage hourglass networks from multi-view images. Furthermore, a coarse-to-fine method is proposed to refine the 3D models from multi-view images through learning the voxel super-resolution. In this method, the coarse 3D models are estimated firstly by the learned implicit function based on multi-scale features from multi-view images. Afterwards, by voxelizing the coarse 3D models to low resolution voxel grids, voxel super-resolution is learned through a multi-stage 3D CNN for feature extraction from low resolution voxel grids and fully connected neural network for predicting the implicit function. Voxel super-resolution is able to remove the false reconstruction and preserve the surface details. The proposed methods are evaluated on both real and synthetic datasets in which our method can estimate 3D model with higher accuracy and better surface quality than some previous methods

    Irish Machine Vision and Image Processing Conference, Proceedings

    Get PDF

    Aspects of User Experience in Augmented Reality

    Get PDF

    3D Face Reconstruction: the Road to Forensics

    Get PDF
    3D face reconstruction algorithms from images and videos are applied to many fields, from plastic surgery to the entertainment sector, thanks to their advantageous features. However, when looking at forensic applications, 3D face reconstruction must observe strict requirements that still make its possible role in bringing evidence to a lawsuit unclear. An extensive investigation of the constraints, potential, and limits of its application in forensics is still missing. Shedding some light on this matter is the goal of the present survey, which starts by clarifying the relation between forensic applications and biometrics, with a focus on face recognition. Therefore, it provides an analysis of the achievements of 3D face reconstruction algorithms from surveillance videos and mugshot images and discusses the current obstacles that separate 3D face reconstruction from an active role in forensic applications. Finally, it examines the underlying data sets, with their advantages and limitations, while proposing alternatives that could substitute or complement them

    3D Face Reconstruction: the Road to Forensics

    Full text link
    3D face reconstruction algorithms from images and videos are applied to many fields, from plastic surgery to the entertainment sector, thanks to their advantageous features. However, when looking at forensic applications, 3D face reconstruction must observe strict requirements that still make its possible role in bringing evidence to a lawsuit unclear. An extensive investigation of the constraints, potential, and limits of its application in forensics is still missing. Shedding some light on this matter is the goal of the present survey, which starts by clarifying the relation between forensic applications and biometrics, with a focus on face recognition. Therefore, it provides an analysis of the achievements of 3D face reconstruction algorithms from surveillance videos and mugshot images and discusses the current obstacles that separate 3D face reconstruction from an active role in forensic applications. Finally, it examines the underlying data sets, with their advantages and limitations, while proposing alternatives that could substitute or complement them.Comment: The manuscript has been accepted for publication in ACM Computing Surveys. arXiv admin note: text overlap with arXiv:2303.1116

    Spatial integration in computer-augmented realities

    Get PDF
    In contrast to virtual reality, which immerses the user in a wholly computergenerated perceptual environment, augmented reality systems superimpose virtual entities on the user's view of the real world. This concept promises to fulfil new applications in a wide range of fields, but there are some challenging issues to be resolved. One issue relates to achieving accurate registration of virtual and real worlds. Accurate spatial registration is not only required with respect to lateral positioning, but also in depth. A limiting problem with existing optical-see-through displays, typically used for augmenting reality, is that they are incapable of displaying a full range of depth cues. Most significantly, they are unable to occlude real background and hence cannot produce interposition depth cueing. Neither are they able to modify the real-world view in the ways required to produce convincing common illumination effects such as virtual shadows across real surfaces. Also, at present, there are no wholly satisfactory ways of determining suitable common illumination models with which to determine the real-virtual light interactions necessary for producing such depth cues. This thesis establishes that interpositioning is essential for appropriate estimation of depth in augmented realities, and that the presence of shadows provides an important refining cue. It also extends the concept of a transparency alpha-channel to allow optical-see-through systems to display appropriate depth cues. The generalised theory of the approach is described mathematically and algorithms developed to automate generation of display-surface images. Three practical physical display strategies are presented; using a transmissive mask, selective lighting using digital projection, and selective reflection using digital micromirror devices. With respect to obtaining a common illumination model, all current approaches require either . prior knowledge of the light sources illuminating the real scene, or involve inserting some kind of probe into the scene with which to determine real light source position, shape, and intensity. This thesis presents an alternative approach that infers a plausible illumination from a limited view of the scene.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore