1,078 research outputs found

    3-D Center-Weighted Vector Directional Filters for Noisy Color Sequences

    Get PDF
    This paper focuses on a noise filtering in color image sequences, where a new class of center-weighted vector directional filters is provided. According to high dimensionality of color image sequences, where besides the spatial frequencies in the frames it is necessary to consider the temporal correlation of an image sequence and the correlation between color channels too, the processing of color image sequences represents very important and interesting problem. Clearly, the color image sequences represent three-dimensional (3-D) vector-valued image signals and thus, the 3-D vector filters provide optimal approach, only. Novelty of this paper lies in the impulse noise suppression by a new class of center-weighted vector directional filters, where the influence of the filter parameter to filter performance is analyzed. The interesting behavior of a new filter class is illustrated by a number of experimental results and comparisons with the well-known filtering algorithms for color image sequences

    Optimum Image Filters for Various Types of Noise

    Get PDF
    In this paper, the quality performance of several filters in restoration of images corrupted with various types of noise has been examined extensively. In particular, Wiener filter, Gaussian filter, median filter and averaging (mean) filter have been used to reduce Gaussian noise, speckle noise, salt and pepper noise and Poisson noise. Many images have been tested, two of which are shown in this paper. Several percentages of noise corrupting the images have been examined in the simulations. The size of the sliding window is the same in the four filters used, namely 5x5 for all the indicated noise percentages. For image quality measurement, two performance measuring indices are used: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The simulation results show that the performance of some specific filters in reducing some types of noise are much better than others. It has been illustrated that median filter is more appropriate for eliminating salt and pepper noise. Averaging filter still works well for such type of noise, but of less performance quality than the median filter. Gaussian and Wiener filters outperform other filters in restoring mages corrupted with Poisson and speckle noise

    Project Tech Top study of lunar, planetary and solar topography Final report

    Get PDF
    Data acquisition techniques for information on lunar, planetary, and solar topograph

    Effect of kernel size on Wiener and Gaussian image filtering

    Get PDF
    In this paper, the effect of the kernel size of Wiener and Gaussian filters on their image restoration qualities has been studied and analyzed. Four sizes of such kernels, namely 3x3, 5x5, 7x7 and 9x9 were simulated. Two different types of noise with zero mean and several variances have been used: Gaussian noise and speckle noise. Several image quality measuring indices have been applied in the computer simulations. In particular, mean absolute error (MAE), mean square error (MSE) and structural similarity (SSIM) index were used. Many images were tested in the simulations; however the results of three of them are shown in this paper. The results show that the Gaussian filter has a superior performance over the Wiener filter for all values of Gaussian and speckle noise variances mainly as it uses the smallest kernel size. To obtain a similar performance in Wiener filtering, a larger kernel size is required which produces much more blur in the output mage. The Wiener filter shows poor performance using the smallest kernel size (3x3) while the Gaussian filter shows the best results in such case. With the Gaussian filter being used, similar results of those obtained with low noise could be obtained in the case of high noise variance but with a higher kernel size

    Navigation of mobile robots using artificial intelligence technique.

    Get PDF
    The ability to acquire a representation of the spatial environment and the ability to localize within it are essential for successful navigation in a-priori unknown environments. This document presents a computer vision method and related algorithms for the navigation of a robot in a static environment. Our environment is a simple white colored area with black obstacles and robot (with some identification mark-a circle and a rectangle of orange color which helps in giving it a direction) present over it. This environment is grabbed in a camera which sends image to the desktop using data cable. The image is then converted to the binary format from jpeg format using software which is then processed in the computer using MATLAB. The data acquired from the program is then used as an input for another program which controls the robot drive motors using wireless controls. Robot then tries to reach its destination avoiding obstacles in its path. The algorithm presented in this paper uses the distance transform methodology to generate paths for the robot to execute. This paper describes an algorithm for approximately finding the fastest route for a vehicle to travel one point to a destination point in a digital plain map, avoiding obstacles along the way. In our experimental setup the camera used is a SONY HANDYCAM. This camera grabs the image and specifies the location of the robot (starting point) in the plain and its destination point. The destination point used in our experimental setup is a table tennis ball, but it can be any other entity like a single person, a combat unit or a vehicle

    A Data Cube Extraction Pipeline for a Coronagraphic Integral Field Spectrograph

    Get PDF
    Project 1640 is a high contrast near-infrared instrument probing the vicinities of nearby stars through the unique combination of an integral field spectrograph with a Lyot coronagraph and a high-order adaptive optics system. The extraordinary data reduction demands, similar those which several new exoplanet imaging instruments will face in the near future, have been met by the novel software algorithms described herein. The Project 1640 Data Cube Extraction Pipeline (PCXP) automates the translation of 3.8*10^4 closely packed, coarsely sampled spectra to a data cube. We implement a robust empirical model of the spectrograph focal plane geometry to register the detector image at sub-pixel precision, and map the cube extraction. We demonstrate our ability to accurately retrieve source spectra based on an observation of Saturn's moon Titan.Comment: 35 pages, 15 figures; accepted for publication in PAS

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    Aerospace medicine and biology: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 138 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jun. 1980

    Blood Velocities Estimation using Ultrasound

    Get PDF
    This thesis consists of two parts. In the rst part, the iterative data-adaptive BIAA spectral estimation technique was extended to estimate lateral blood velocities using ultrasound scanners. The BIAA method makes no assumption on samples depth or sampling pattern, and therefore allows for transmission in duplex mode imaging. The technique was examined on a realistic Field II simulation data set, and showed fewer spectral artifacts in comparison with other techniques. In the second part of the thesis, another common problem in blood velocity estimation has been investigated, namely strong backscattered signals from stationary echoes. Two methods have been tested to examine the possibility of overcoming this problem. However, neither of these methods resulted in a better estimation of the blood velocities, most likely as the clutter characteristics in color ow images vary too rapidly to allow for this form of models. This might be a result of the non-stationary tissue motions which could be caused by a variety of factors, such as cardiac activities, respiration, transducer/patient movement, or a combination of them
    corecore