2,965 research outputs found

    Partitioning random graphs into monochromatic components

    Full text link
    Erd\H{o}s, Gy\'arf\'as, and Pyber (1991) conjectured that every rr-colored complete graph can be partitioned into at most r1r-1 monochromatic components; this is a strengthening of a conjecture of Lov\'asz (1975) in which the components are only required to form a cover. An important partial result of Haxell and Kohayakawa (1995) shows that a partition into rr monochromatic components is possible for sufficiently large rr-colored complete graphs. We start by extending Haxell and Kohayakawa's result to graphs with large minimum degree, then we provide some partial analogs of their result for random graphs. In particular, we show that if p(27lognn)1/3p\ge \left(\frac{27\log n}{n}\right)^{1/3}, then a.a.s. in every 22-coloring of G(n,p)G(n,p) there exists a partition into two monochromatic components, and for r2r\geq 2 if p(rlognn)1/rp\ll \left(\frac{r\log n}{n}\right)^{1/r}, then a.a.s. there exists an rr-coloring of G(n,p)G(n,p) such that there does not exist a cover with a bounded number of components. Finally, we consider a random graph version of a classic result of Gy\'arf\'as (1977) about large monochromatic components in rr-colored complete graphs. We show that if p=ω(1)np=\frac{\omega(1)}{n}, then a.a.s. in every rr-coloring of G(n,p)G(n,p) there exists a monochromatic component of order at least (1o(1))nr1(1-o(1))\frac{n}{r-1}.Comment: 27 pages, 2 figures. Appears in Electronic Journal of Combinatorics Volume 24, Issue 1 (2017) Paper #P1.1

    A Survey on Monochromatic Connections of Graphs

    Get PDF
    The concept of monochromatic connection of graphs was introduced by Caro and Yuster in 2011. Recently, a lot of results have been published about it. In this survey, we attempt to bring together all the results that dealt with it. We begin with an introduction, and then classify the results into the following categories: monochromatic connection coloring of edge-version, monochromatic connection coloring of vertex-version, monochromatic index, monochromatic connection coloring of total-version.Comment: 26 pages, 3 figure

    Covering graphs by monochromatic trees and Helly-type results for hypergraphs

    Full text link
    How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given rr-edge-coloured graph GG? These problems were introduced in the 1960s and were intensively studied by various researchers over the last 50 years. In this paper, we establish a connection between this problem and the following natural Helly-type question in hypergraphs. Roughly speaking, this question asks for the maximum number of vertices needed to cover all the edges of a hypergraph HH if it is known that any collection of a few edges of HH has a small cover. We obtain quite accurate bounds for the hypergraph problem and use them to give some unexpected answers to several questions about covering graphs by monochromatic trees raised and studied by Bal and DeBiasio, Kohayakawa, Mota and Schacht, Lang and Lo, and Gir\~ao, Letzter and Sahasrabudhe.Comment: 20 pages including references plus 2 pages of an Appendi

    Constrained Ramsey Numbers

    Full text link
    For two graphs S and T, the constrained Ramsey number f(S, T) is the minimum n such that every edge coloring of the complete graph on n vertices, with any number of colors, has a monochromatic subgraph isomorphic to S or a rainbow (all edges differently colored) subgraph isomorphic to T. The Erdos-Rado Canonical Ramsey Theorem implies that f(S, T) exists if and only if S is a star or T is acyclic, and much work has been done to determine the rate of growth of f(S, T) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang, and Ling showed that f(S, T) <= O(st^2) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this work, we study this case and show that f(S, P_t) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.Comment: 12 pages; minor revision

    Minimum degree conditions for monochromatic cycle partitioning

    Get PDF
    A classical result of Erd\H{o}s, Gy\'arf\'as and Pyber states that any rr-edge-coloured complete graph has a partition into O(r2logr)O(r^2 \log r) monochromatic cycles. Here we determine the minimum degree threshold for this property. More precisely, we show that there exists a constant cc such that any rr-edge-coloured graph on nn vertices with minimum degree at least n/2+crlognn/2 + c \cdot r \log n has a partition into O(r2)O(r^2) monochromatic cycles. We also provide constructions showing that the minimum degree condition and the number of cycles are essentially tight.Comment: 22 pages (26 including appendix
    corecore