185 research outputs found

    Partitioning random graphs into monochromatic components

    Full text link
    Erd\H{o}s, Gy\'arf\'as, and Pyber (1991) conjectured that every rr-colored complete graph can be partitioned into at most r1r-1 monochromatic components; this is a strengthening of a conjecture of Lov\'asz (1975) in which the components are only required to form a cover. An important partial result of Haxell and Kohayakawa (1995) shows that a partition into rr monochromatic components is possible for sufficiently large rr-colored complete graphs. We start by extending Haxell and Kohayakawa's result to graphs with large minimum degree, then we provide some partial analogs of their result for random graphs. In particular, we show that if p(27lognn)1/3p\ge \left(\frac{27\log n}{n}\right)^{1/3}, then a.a.s. in every 22-coloring of G(n,p)G(n,p) there exists a partition into two monochromatic components, and for r2r\geq 2 if p(rlognn)1/rp\ll \left(\frac{r\log n}{n}\right)^{1/r}, then a.a.s. there exists an rr-coloring of G(n,p)G(n,p) such that there does not exist a cover with a bounded number of components. Finally, we consider a random graph version of a classic result of Gy\'arf\'as (1977) about large monochromatic components in rr-colored complete graphs. We show that if p=ω(1)np=\frac{\omega(1)}{n}, then a.a.s. in every rr-coloring of G(n,p)G(n,p) there exists a monochromatic component of order at least (1o(1))nr1(1-o(1))\frac{n}{r-1}.Comment: 27 pages, 2 figures. Appears in Electronic Journal of Combinatorics Volume 24, Issue 1 (2017) Paper #P1.1

    Directed Ramsey number for trees

    Get PDF
    In this paper, we study Ramsey-type problems for directed graphs. We first consider the kk-colour oriented Ramsey number of HH, denoted by R(H,k)\overrightarrow{R}(H,k), which is the least nn for which every kk-edge-coloured tournament on nn vertices contains a monochromatic copy of HH. We prove that R(T,k)ckTk \overrightarrow{R}(T,k) \le c_k|T|^k for any oriented tree TT. This is a generalisation of a similar result for directed paths by Chv\'atal and by Gy\'arf\'as and Lehel, and answers a question of Yuster. In general, it is tight up to a constant factor. We also consider the kk-colour directed Ramsey number R(H,k)\overleftrightarrow{R}(H,k) of HH, which is defined as above, but, instead of colouring tournaments, we colour the complete directed graph of order nn. Here we show that R(T,k)ckTk1 \overleftrightarrow{R}(T,k) \le c_k|T|^{k-1} for any oriented tree TT, which is again tight up to a constant factor, and it generalises a result by Williamson and by Gy\'arf\'as and Lehel who determined the 22-colour directed Ramsey number of directed paths.Comment: 27 pages, 14 figure

    Monochromatic trees in random tournaments

    Get PDF
    We prove that, with high probability, in every 2-edge-colouring of the random tournament on n vertices there is a monochromatic copy of every oriented tree of order O(n/ \sqrt{log n}. This generalizes a result of the first, third and fourth authors, who proved the same statement for paths, and is tight up to a constant factor

    Extremal graph colouring and tiling problems

    Get PDF
    In this thesis, we study a variety of different extremal graph colouring and tiling problems in finite and infinite graphs. Confirming a conjecture of Gyárfás, we show that for all k, r ∈ N there is a constant C > 0 such that the vertices of every r-edge-coloured complete k-uniform hypergraph can be partitioned into a collection of at most C monochromatic tight cycles. We shall say that the family of tight cycles has finite r-colour tiling number. We further prove that, for all natural numbers k, p and r, the family of p-th powers of k-uniform tight cycles has finite r-colour tiling number. The case where k = 2 settles a problem of Elekes, Soukup, Soukup and Szentmiklóssy. We then show that for all natural numbers ∆, r, every family F = {F1, F2, . . .} of graphs with v (Fn) = n and ∆(Fn) ≤ ∆ for every n ∈ N has finite r-colour tiling number. This makes progress on a conjecture of Grinshpun and Sárközy. We study Ramsey problems for infinite graphs and prove that in every 2-edge- colouring of KN, the countably infinite complete graph, there exists a monochromatic infinite path P such that V (P) has upper density at least (12 + √8)/17 ≈ 0.87226 and further show that this is best possible. This settles a problem of Erdős and Galvin. We study similar problems for many other graphs including trees and graphs of bounded degree or degeneracy and prove analogues of many results concerning graphs with linear Ramsey number in finite Ramsey theory. We also study a different sort of tiling problem which combines classical problems from extremal and probabilistic graph theory, the Corrádi–Hajnal theorem and (a special case of) the Johansson–Kahn–Vu theorem. We prove that there is some constant C > 0 such that the following is true for every n ∈ 3N and every p ≥ Cn−2/3 (log n)1/3. If G is a graph on n vertices with minimum degree at least 2n/3, then Gp (the random subgraph of G obtained by keeping every edge independently with probability p) contains a triangle tiling with high probability

    Covering graphs by monochromatic trees and Helly-type results for hypergraphs

    Full text link
    How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given rr-edge-coloured graph GG? These problems were introduced in the 1960s and were intensively studied by various researchers over the last 50 years. In this paper, we establish a connection between this problem and the following natural Helly-type question in hypergraphs. Roughly speaking, this question asks for the maximum number of vertices needed to cover all the edges of a hypergraph HH if it is known that any collection of a few edges of HH has a small cover. We obtain quite accurate bounds for the hypergraph problem and use them to give some unexpected answers to several questions about covering graphs by monochromatic trees raised and studied by Bal and DeBiasio, Kohayakawa, Mota and Schacht, Lang and Lo, and Gir\~ao, Letzter and Sahasrabudhe.Comment: 20 pages including references plus 2 pages of an Appendi

    Coverings by Few Monochromatic Pieces: A Transition Between Two Ramsey Problems

    Get PDF
    The typical problem in (generalized) Ramsey theory is to find the order of the largest monochromatic member of a family {Mathematical expression} (for example matchings, paths, cycles, connected subgraphs) that must be present in any edge coloring of a complete graph Kn with t colors. Another area is to find the minimum number of monochromatic members of {Mathematical expression} that partition or cover the vertex set of every edge colored complete graph. Here we propose a problem that connects these areas: for a fixed positive integers s ≤ t, at least how many vertices can be covered by the vertices of no more than s monochromatic members of {Mathematical expression} in every edge coloring of Kn with t colors. Several problems and conjectures are presented, among them a possible extension of a well-known result of Cockayne and Lorimer on monochromatic matchings for which we prove an initial step: every t-coloring of Kn contains a (t - 1)-colored matching of size k provided that {Mathematical expression} © 2013 Springer Japan
    corecore