9 research outputs found

    Subject Index Volumes 1–200

    Get PDF

    Combinatorics

    Get PDF
    [no abstract available

    Packing and covering in combinatorics

    Get PDF

    Recent results and open problems on CIS Graphs

    Get PDF

    On Approximability, Convergence, and Limits of CSP Problems

    Get PDF
    This thesis studies dense constraint satisfaction problems (CSPs), and other related optimization and decision problems that can be phrased as questions regarding parameters or properties of combinatorial objects such as uniform hypergraphs. We concentrate on the information that can be derived from a very small substructure that is selected uniformly at random. In this thesis, we present a unified framework on the limits of CSPs in the sense of the convergence notion of Lovasz-Szegedy that depends only on the remarkable connection between graph sequences and exchangeable arrays established by Diaconis-Janson. In particular, we formulate and prove a representation theorem for compact colored r-uniform directed hypergraphs and apply this to rCSPs. We investigate the sample complexity of testable r-graph parameters, and discuss a generalized version of ground state energies (GSE) and demonstrate that they are efficiently testable. The GSE is a term borrowed from statistical physics that stands for a generalized version of maximal multiway cut problems from complexity theory, and was studied in the dense graph setting by Borgs et al. A notion related to testing CSPs that are defined on graphs, the nondeterministic property testing, was introduced by Lovasz-Vesztergombi, which extends the graph property testing framework of Goldreich-Goldwasser-Ron in the dense graph model. In this thesis, we study the sample complexity of nondeterministically testable graph parameters and properties and improve existing bounds by several orders of magnitude. Further, we prove the equivalence of the notions of nondeterministic and deterministic parameter and property testing for uniform dense hypergraphs of arbitrary rank, and provide the first effective upper bound on the sample complexity in this general case

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et MĂ©tiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Monochromatic kernel-perfectness of special classes of digraphs

    No full text
    In this paper, we introduce the concept of monochromatic kernel-perfect digraph, and we prove the following two results: (1) If D is a digraph without monochromatic directed cycles, then D and each αv,v∈V(D)α_v,v ∈ V(D) are monochromatic kernel-perfect digraphs if and only if the composition over D of (αv)v∈V(D)(α_v)_{v ∈ V(D)} is a monochromatic kernel-perfect digraph. (2) D is a monochromatic kernel-perfect digraph if and only if for any B ⊆ V(D), the duplication of D over B, DBD^B, is a monochromatic kernel-perfect digraph
    corecore